

PERMASTEELISA

**Environmental
Product
Declaration**

According to EN15804+A2

This declaration is for:

Curtain wall ST-12 of the project "Enel HQ", Rome

Provided by:

Permasteelisa S.p.A. - Permasteelisa Group

MRPI® registration:

1.1.01035.2025

Program operator:

Stichting MRPI®

Publisher:

Stichting MRPI®

www.mrpi.nl

Date of first issue:

23-10-2025

Date of this issue:

23-10-2025

Expiry date:

23-10-2030

COMPANY INFORMATION

Permasteelisa S.p.A. - Permasteelisa Group

Viale E. Mattei 21/23

31029 TV

Vittorio Veneto

Italy

+39 0438 504635

info@permasteelisagroup.com

<https://permasteelisa.permasteelisagroup.com/>

MRPI® REGISTRATION

1.1.01035.2025

DATE OF THIS ISSUE

23-10-2025

EXPIRY DATE

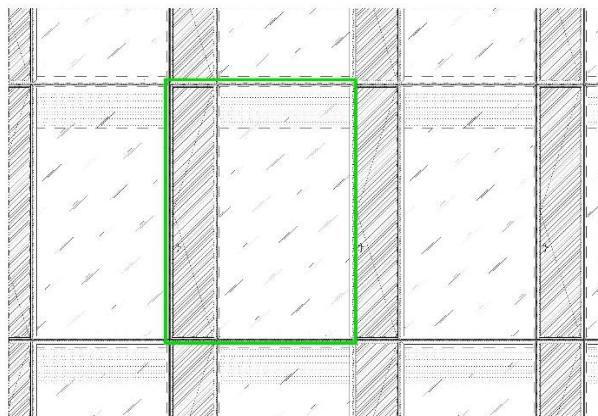
23-10-2030

SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by B. Roijen, SGS INTRON b.v.. The LCA study has been done by L. Ceyhan-van Munster, Nibe b.v.. The certificate is based on an LCA-dossier according to EN15804+A2. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PRODUCT

Curtain wall ST-12 of the project "Enel HQ", Rome


DECLARED UNIT / FUNCTIONAL UNIT

1 m2

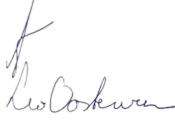
DESCRIPTION OF PRODUCT

A typical curtain wall element ST-12 of the project "Enel HQ", Rome, including fixings and closures. Size: $2.4 \times 3.430 = 8.23 \text{ m}^2$. The results are expressed per m² of façade area by applying the conversion factor 1 / 8.23 m².

VISUAL PRODUCT

PROGRAM OPERATOR

Stichting MRPI®


Kingsfordweg 151

1043 GR

Amsterdam

MORE INFORMATION

<https://permasteelisagroup.com>

Ing. L. L. Oosterveen MSc. MBA Managing Director MRPI	DEMONSTRATION OF VERIFICATION
	CEN standard EN15804 serves as the core PCR [1]
	Independent verification of the declaration and data according to EN15804+A2 Internal: <input checked="" type="checkbox"/> External: X
	Third party verifier: B. Roijen, SGS INTRON b.v.
[1] PCR = Product Category Rules	

PERMASTEELISA

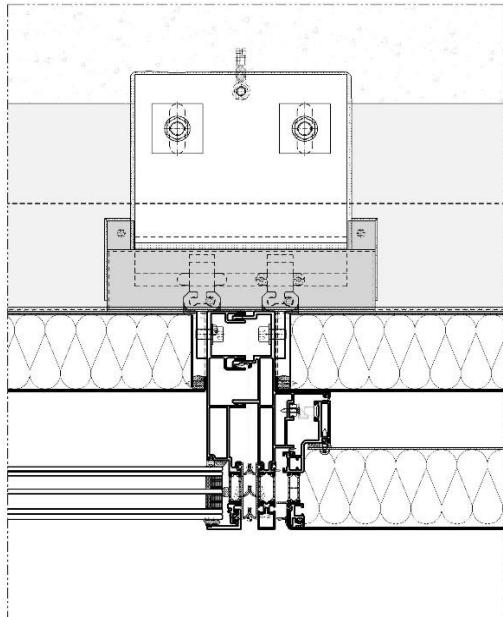
DETAILED PRODUCT DESCRIPTION

One typical curtain wall facade element ST-12 of the project "Enel HQ", Rome, including fixings and closures. The module is composed of vision glazing and operable opaque panel.

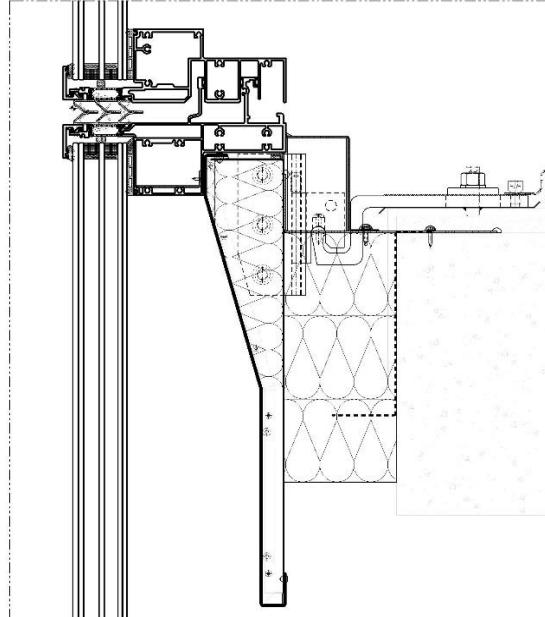
Size: 2.4 x 3.430 = 8.23 m². Results converted to 1 m² of facade area.

Weight: 84.4 kg /m².

Consisting of the following parts:


Glazing: GT 10, TGU 66.2-18-6-16-55.2

Opaque: Panel composed by 2mm thk. aluminium sheet, 90mm thk. mineral wool, 2mm thk. steel sheet


Aluminium profiles: 179 mm deep (mullions and transoms)

Firestop at floor edge: 132 x 300 mm mineral wool with 2 mm steel sheet on top.

Performance in accordance with CE-marking nr. 018-CPR-2021.

ST-12 Typical mullion detail

ST-12 Typical floor-edge detail

RSL Product

The curtain wall facade has a reference service life of 60 years.

RSL parts

The facade consists of various parts with different service lifetimes. During the reference service life (RSL) of the facade (60 years), several parts like glazing, sealants and gaskets need to be replaced. The replacement of these parts has been accounted for in life cycle stage B3.

The reference service life of the product parts in this report is based on the estimated service life, as defined in BS ISO 15686-1, which Permasteelisa S.p.A. provides to the client in their general guarantees and warranties schedule. For materials with varying service life categories the shortest period is taken as a conservative approach.

*The RSL of 25 years for the glazing and the sealant has been artificially modelled as 20 years to end up with a discrete number of replacement cycles, following the CWCT guideline.

Product part	RSL
Laminated triple glazing	25 years*
EPDM gaskets	30 years
Sealant	25 years*
All other parts	60 years

Component (> 1%)	(kg /m2)
Laminated triple glazing	50,12
Anodised aluminium extrusions	4,2
Powder coated aluminium extrusions	16,24
Powder coating aluminium sheets	2,03
Powder coating steel sheets	2,85
Thermal breaks	0,73*
Mineral wool insulation	2,13
Pre-galvanised steel sheets	3,82
Chromium steel parts e.g. fasteners	0,60*
EPDM gaskets	1,21
Sealant	0,46*
Total	84,39
(*) <1% of the total mass, but included for completeness of the assessment	

SCOPE AND TYPE

The input data are representative for facade type ST12 of the project "Enel HQ" in Rome, a product produced by PermaSteelisa S.p.A in Vittorio Veneto, Italy. The data are representative for building site Rome and production location Vittorio Veneto with suppliers located in Europe. In absence of predefined waste / end-of-life scenarios for Italy, the Dutch scenarios are used, because they are deemed representative.

LCA method R<THINK: EN15804+A2:2019

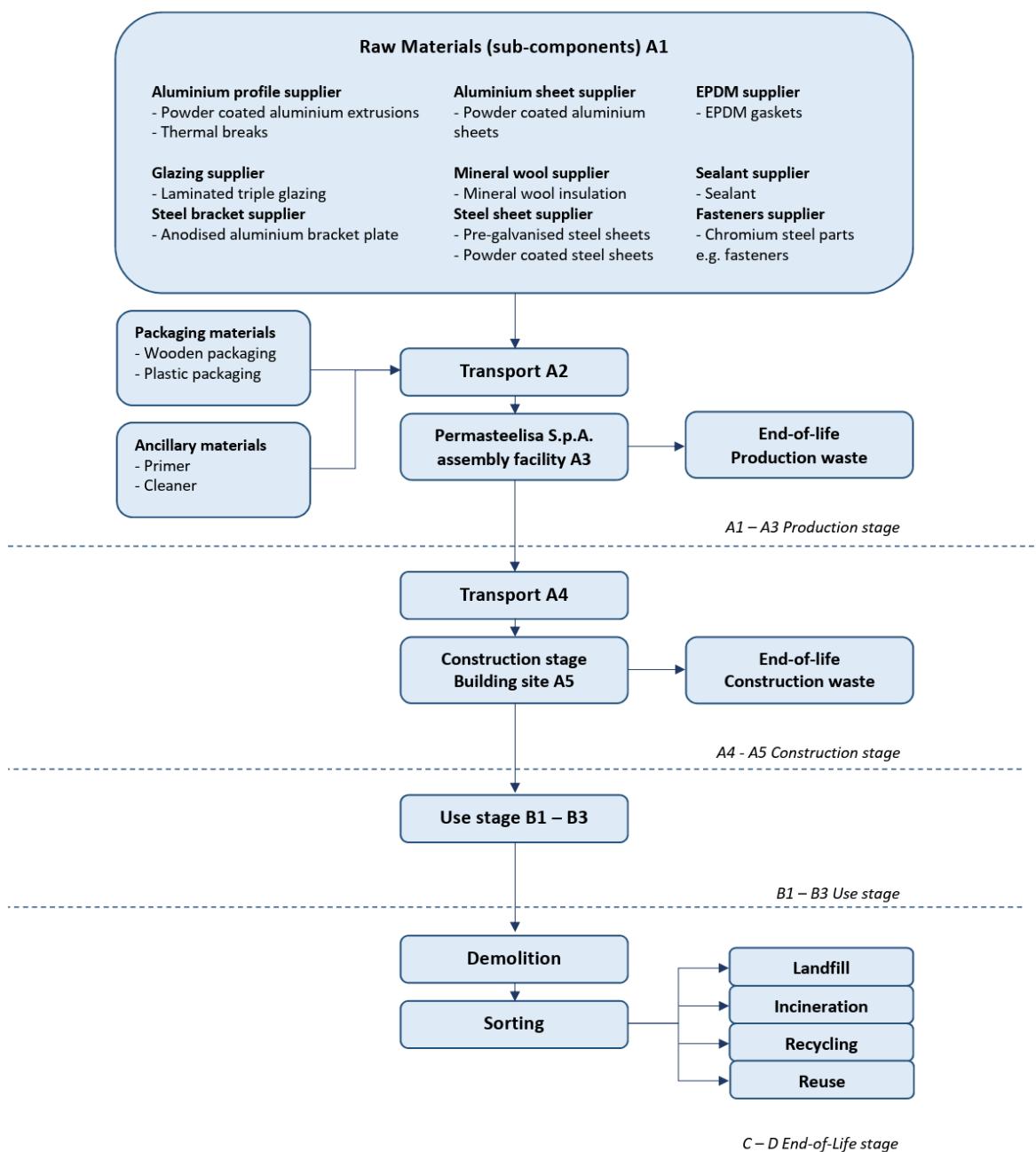
LCA software**: Simapro 9.6

Characterisation method: EN 15804 +A2 Method v1.0

LCA database profiles: Ecoinvent version 3.6

Version database: v3.19 (2025-03-06)

(**) Used for calculating the characterised results of the environmental profiles within R<THINK.



PRODUCT STAGE			CONSTRUCTION PROCESS STAGE		USE STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	X	X	X	X	X	ND	ND	ND	ND	X	X	X	X	X

X = Modules Assessed

ND = Not Declared

REPRESENTATIVENESS

The input data are representative for facade type ST12 of the project "Enel HQ" in Italy, a product produced by Permasteelisa S.p.A in Vittorio Veneto, Italy. The data are representative for building site Rome and production location Vittorio Veneto with suppliers located in Europe.

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq.	2,95E+02	7,28E+00	2,25E+01	3,25E+02	6,95E+00	3,64E+01	0,00E+00	6,28E+00	1,87E+02	0,00E+00	0,00E+00	0,00E+00	1,20E+00	7,42E-01	1,51E+01	1,49E-01	-1,79E+02
GWP-fossil	kg CO ₂ eq.	2,92E+02	7,27E+00	2,86E+01	3,28E+02	6,95E+00	2,98E+01	0,00E+00	7,30E+00	1,86E+02	0,00E+00	0,00E+00	0,00E+00	1,18E+00	7,42E-01	1,49E+01	1,49E-01	-1,76E+02
GWP-biogenic	kg CO ₂ eq.	3,49E-01	2,93E-03	-6,18E+00	-5,83E+00	2,80E-03	6,54E+00	0,00E+00	2,39E-02	6,10E-01	0,00E+00	0,00E+00	0,00E+00	2,07E-02	2,99E-04	1,60E-01	1,81E-04	-8,95E-01
GWP-luluc	kg CO ₂ eq.	2,80E+00	2,67E-03	9,19E-02	2,89E+00	2,55E-03	9,90E-02	0,00E+00	1,69E+00	1,11E-01	0,00E+00	0,00E+00	0,00E+00	2,27E-04	2,72E-04	4,46E-03	4,28E-05	-2,55E+00
ODP	kg CFC11 eq.	2,35E-05	1,61E-06	3,68E-06	2,88E-05	1,53E-06	3,52E-06	0,00E+00	8,17E-07	1,63E-05	0,00E+00	0,00E+00	0,00E+00	1,62E-07	1,64E-07	8,96E-07	3,99E-08	-1,34E-05
AP	mol H ⁺ eq.	1,76E+00	4,22E-02	2,20E-01	2,03E+00	4,03E-02	1,68E-01	0,00E+00	3,50E-02	6,56E-01	0,00E+00	0,00E+00	0,00E+00	6,45E-03	4,30E-03	3,40E-02	9,46E-04	-1,22E+00
EP-freshwater	kg P eq.	1,21E-02	7,33E-05	7,79E-04	1,29E-02	7,00E-05	1,00E-03	0,00E+00	2,38E-04	3,26E-03	0,00E+00	0,00E+00	0,00E+00	3,78E-05	7,47E-06	2,28E-04	1,62E-06	-7,64E-03
EP-marine	kg N eq.	2,52E-01	1,49E-02	6,91E-02	3,36E-01	1,42E-02	2,47E-02	0,00E+00	2,14E-02	1,60E-01	0,00E+00	0,00E+00	0,00E+00	8,32E-04	1,52E-03	6,42E-03	3,37E-04	-1,48E-01
EP-terrestrial	mol N eq.	2,84E+00	1,64E-01	7,63E-01	3,76E+00	1,57E-01	3,16E-01	0,00E+00	1,18E-01	1,83E+00	0,00E+00	0,00E+00	0,00E+00	1,19E-02	1,67E-02	7,29E-02	3,59E-03	-1,81E+00
POCP	kg NMVOC eq.	9,00E-01	4,68E-02	2,09E-01	1,16E+00	4,47E-02	8,26E-02	0,00E+00	2,38E-02	4,83E-01	0,00E+00	0,00E+00	0,00E+00	2,74E-03	4,77E-03	2,03E-02	1,04E-03	-5,65E-01
ADP-minerals & metals	kg Sb eq.	3,03E-02	1,84E-04	1,12E-02	4,16E-02	1,76E-04	1,11E-03	0,00E+00	1,42E-04	3,05E-03	0,00E+00	0,00E+00	0,00E+00	9,25E-06	1,88E-05	1,40E-04	9,20E-07	8,29E-02
ADP-fossil	MJ net calorific value	3,95E+03	1,10E+02	3,99E+02	4,46E+03	1,05E+02	4,15E+02	0,00E+00	6,20E+01	2,55E+03	0,00E+00	0,00E+00	0,00E+00	1,74E+01	1,12E+01	6,07E+01	2,85E+00	-2,07E+03
WDP	m ³ world Deprived	9,07E+01	3,92E-01	9,81E+00	1,01E+02	3,75E-01	1,38E+01	0,00E+00	4,21E+00	3,55E+01	0,00E+00	0,00E+00	0,00E+00	6,91E-01	4,00E-02	1,31E+00	3,23E-02	-3,03E+01

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels

GWP-biogenic = Global Warming Potential biogenictotal

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment

EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]

ADP-fossil = Abiotic Depletion for fossil resources potential [1]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PM	Disease incidence	1,66E-05	6,52E-07	1,06E-06	1,83E-05	6,23E-07	1,02E-06	0,00E+00	4,41E-07	6,56E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,48E-08	6,65E-08	3,99E-07	1,85E-08	-1,16E-05
IRP	kBq U235 eq.	1,50E+01	4,59E-01	1,43E+00	1,69E+01	4,39E-01	1,29E+00	0,00E+00	2,16E-01	7,20E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,76E-02	4,69E-02	2,63E-01	1,20E-02	-8,12E+00
ETP-fw	CTUe	8,45E+03	9,78E+01	6,07E+02	9,16E+03	9,35E+01	5,58E+02	0,00E+00	1,99E+02	5,97E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,54E+01	9,97E+00	4,54E+02	4,20E+02	-3,94E+03
HTP-c	CTUh	6,03E-07	3,17E-09	2,67E-08	6,32E-07	3,03E-09	2,75E-08	0,00E+00	9,04E-09	7,89E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,92E-10	3,24E-10	7,14E-09	5,75E-11	-3,43E-07
HTP-nc	CTUh	8,47E-06	1,07E-07	5,88E-07	9,16E-06	1,02E-07	4,75E-07	0,00E+00	1,53E-07	2,16E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,11E-08	1,09E-08	2,13E-07	1,85E-09	-3,17E-06
SQP	-	7,65E+02	9,51E+01	8,63E+02	1,72E+03	9,09E+01	1,65E+02	0,00E+00	1,60E+02	6,49E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,95E+00	9,70E+00	5,26E+01	5,93E+00	-5,99E+02

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	kg	7,27E-02	2,78E-04	4,44E-02	1,17E-01	2,66E-04	7,63E-03	0,00E+00	1,48E-04	4,60E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,30E-05	2,84E-05	1,40E-01	3,27E-06	1,75E-01
NHWD	kg	6,23E+01	6,96E+00	4,65E+00	7,39E+01	6,65E+00	8,12E+00	0,00E+00	2,71E+01	7,23E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,60E-02	7,09E-01	6,89E+00	1,79E+01	-4,25E+01
RWD	kg	1,82E-02	7,22E-04	1,83E-03	2,08E-02	6,90E-04	1,42E-03	0,00E+00	2,90E-04	1,66E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,74E-05	7,36E-05	2,82E-04	1,82E-05	-7,11E-03
CRU	kg	0,00E+00																	
MFR	kg	0,00E+00	0,00E+00	3,75E+00	3,75E+00	0,00E+00	2,20E+00	0,00E+00	0,00E+00	7,30E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E+01	0,00E+00	0,00E+00
MER	kg	0,00E+00																	
EEE	MJ	0,00E+00	0,00E+00	1,92E+00	1,92E+00	0,00E+00	3,26E+01												
ETE	MJ	0,00E+00	0,00E+00	3,30E+00	3,30E+00	0,00E+00	5,61E+01												

HWD = Hazardous Waste Disposed
 NHWD = Non Hazardous Waste Disposed
 RWD = Radioactive Waste Disposed
 CRU = Components for reuse
 MFR = Materials for recycling
 MER = Materials for energy recovery
 EEE = Exported Electrical Energy
 ETE = Exported Thermal Energy

RESOURCE USE per functional unit or declared unit (A1 and A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	8,61E+02	1,37E+00	1,01E+02	9,63E+02	1,31E+00	1,15E+02	0,00E+00	3,04E+01	1,80E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,45E+00	1,40E-01	6,45E+00	6,20E-02	-6,97E+02
PERM	MJ	0,00E+00	0,00E+00	5,18E+01	5,18E+01	0,00E+00	1,55E+00	0,00E+00											
PERT	MJ	8,61E+02	1,37E+00	1,53E+02	1,02E+03	1,31E+00	1,17E+02	0,00E+00	3,04E+01	1,80E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,45E+00	1,40E-01	6,45E+00	6,20E-02	-6,97E+02
PENRE	MJ	4,10E+03	1,16E+02	4,04E+02	4,62E+03	1,11E+02	4,42E+02	0,00E+00	6,87E+01	2,55E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,88E+01	1,19E+01	6,48E+01	3,03E+00	-2,21E+03
PENRM	MJ	6,79E+01	0,00E+00	2,15E+01	8,94E+01	0,00E+00	2,69E+00	0,00E+00	0,00E+00	7,25E+01	0,00E+00	-6,70E+00							
PENRT	MJ	4,17E+03	1,16E+02	4,25E+02	4,71E+03	1,11E+02	4,44E+02	0,00E+00	6,87E+01	2,63E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,88E+01	1,19E+01	6,48E+01	3,03E+00	-2,21E+03
SM	kg	9,77E+00	0,00E+00	8,88E-01	1,07E+01	0,00E+00	3,20E-01	0,00E+00	0,00E+00	4,57E+00	0,00E+00	2,72E-01							
RSF	MJ	0,00E+00																	
NSRF	MJ	0,00E+00																	
FW	m3	5,53E+00	1,34E-02	3,15E-01	5,85E+00	1,28E-02	4,77E-01	0,00E+00	1,79E-01	1,09E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,86E-02	1,36E-03	5,23E-02	3,19E-03	-3,46E+00

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NSRF = Use of non-renewable secondary fuels

FW = Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
BBCpr	kg C	0,00E+00																	
BCCpa	kg C	0,00E+00	0,00E+00	5,83E+00	5,83E+00	0,00E+00	6,17E+00	0,00E+00											

BCCpr = Biogenic carbon content in product

BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

CUT-OFF CRITERIA

There is no cut-off applied for the inputs or outputs of any of the processes.

GLASS DATA SOURCE

Guardian EPD based on GaBi background data

TIME PERIOD DATA COLLECTION

Background data is primarily based on Ecoinvent 3.6. Foreground data is <2 years and background data <10 years. The data quality is considered to be good.

Material quantities: design specific

Suppliers: FY2024

Factory: Calendar Year 2020-2024

Building site: following CWCT

Emissions: n/a

Fiscal Year 2024 (referred to FY2024 henceforth) refers to the financial year starting from 1st of April 2023, and ending on 31st of March 2024.

ALLOCATION

Allocation is applied for recycling at end-of-life of various materials according to EN 15804 rules.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Life cycle stages A1-A3 (production)

Permasteelisa S.p.A. produce the curtain wall panels in their factory in Vittorio Veneto. The various parts and materials are sourced from various suppliers as semi-finished products, enter the factory and are assembled into a facade panel. After assembly, the facade elements are packed and made ready for transport to the building site together with the brackets and other materials for fixing and/or closure.

Semi-finished products of the suppliers (cradle to supplier gate) are included in stage A1 of this LCA study. The transport movements between suppliers and Permasteelisa S.p.A. are included in stage A2 and all activities in the Permasteelisa S.p.A. assembly location in Vittorio Veneto are included in stage A3.

The production stage consists of the extraction of raw materials, transportation of the raw materials, processing the raw materials into sub-components and the assembly of the sub-components into the end-product. The required energy for production, external treatments, ancillary materials, packaging material and production emissions are included.

The production waste is based on the following assumptions:

-materials without machining: 3% (minimum, prefab)

-gaskets, aluminium profiles + thermal breaks: 15% (based on purchasing data v.s. net amounts in facade panels)

-sealant: 30% (based on purchasing data v.s. net amounts in facade panels)

Supplier distances (stage A2)	km
Glazing	815
Aluminium profiles	458
Aluminium sheet work	205
Mineral wool	321
Steel sheet work	232
Fasteners	240
Gaskets	283
Sealant, incl. primer and cleaner	420
Packaging	10

Life cycle stages A4-A5 (construction)

This stage consists of the transport of the product from production plant to the construction site. It also includes the loss of material during construction. The additional needed production, transport and end-of-life treatment of the lost material during construction is included. The end-of-life of packaging material up to the end-of-waste state or disposal of final residues is also included. The energy use for installation of the product is taken into account following the CWCT methodology. Waste output flows as a result of losses at the construction site is assumed to be 3%

The facade elements are delivered on the building site including fastening and closure materials (floor brackets and fire stop). The facade elements are lifted onto the floors of the building and installed. After that, the floor edge detail is completed by applying the mineral wool and steel sheets.

The transport movements between PermaSteelisa S.p.A. Vittorio Veneto and the building site are included in stage A4. All activities on the building site are included in stage A5.

Transport to the construction site consists of the following:

Transport conveyance	Distance	Transported mass [kg]
Lorry (truck): Vittorio Veneto-Rome	583 km	
Total:	583 km	88,32

Life cycle stages B1-B3 (use stage)

This stage consists of the impacts arising from components of the building and construction works during their use. The facade construction itself is assumed to have negligible environmental impact during its use stage B1. Cleaning of the facade needs to be done twice a year and is modelled in stage B2 following CWCT in accordance with EN 17074.

The facade consists of various parts with different service lifetimes. During the reference service life (RSL) of the facade (60 years), several parts like glazing, sealants and gaskets need to be replaced. The replacement of these parts has been accounted for in life cycle stage B3.

Product replacement (B4) and renovation (B5) are not considered. Operational water and energy use (B6-7) are not considered.

Life cycle stages C1-C4 (end of life)

When the end of the life stage of the building is reached, the de-construction/demolition begins. This EPD includes de-construction/demolition (C1), the necessary transport (C2) from the demolition site to the sorting location and distance to final disposal. The end of life stage includes the final disposal to landfill (C4), incineration (C3) and needed recycling processes up to the end-of-waste point (C3). Loads and benefits of recycling, re-use and exported energy are part of module D.

The default end-of-life scenarios of the annex (May 2024) to the NMD Determination method v1.1 have been used for the various materials in the product.

Waste scenario	Landfill [%]	Incineration [%]	Recycling [%]
Glazing	30	0	70
Aluminium	3	3	94
Thermal breaks	20	80	0
Mineral wool insulation	85	5	10
Steel sheets	5	0	95
Gaskets	10	85	5
Chromium steel	1	0	99
Sealant, primer, cleaner	0	100	0
Packaging, wood and plastic	10	85	5

Transport by "Lorry (Truck), unspecified (default) market group for (GLO)"	Distance [km]
Landfill	100
Incineration	150
Recycling	50

Life cycle stage D (benefits and loads beyond the system boundary)

This stage contains the potential loads and benefits of recycling and re-use of raw materials/products. The loads contain the needed recycling processes from end-of-waste-point up to the point-of-equivalence of the substituted primary raw material and a load for secondary material that will be lost at the end-of-life stage. The loads and benefits of recycling and reuse are included in this module. The benefits are calculated based on the primary content and the primary equivalent. In addition, the benefits of energy recovery are granted at this stage. The amount of avoided energy is based on the Lower Heating Values of the materials and the efficiencies of the incinerators as mentioned in the NMD Determination method v1.1 or Ecoinvent 3.6 (2019).

DECLARATION OF SVHC

The product does not contain any substances listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorisation" exceeding 0.1% of the weight of the product.

REFERENCES

CWCT

Centre for Window and Cladding Technology

"How to calculate the embodied carbon of facades: A methodology", Issue 1, September 2022

EN 15804+A2

EN 15804+A2: 2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

ISO 14040

ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework; EN ISO 14040:2006

ISO 14044

ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines; EN ISO 14040:2006

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

MRPI verification protocol

MRPI®-EPD verification protocol November 2020.v4.0

NMD

Nationale Milieu Database (Dutch National Environmental Database) Determination method

REMARKS

This declaration is only valid for the specific design of this project and facade type.

