

Environmental Product Declaration

According to EN15804+A2 (+indicators A1)

This declaration is for:

**Hoogovencement CEM III/B 42,5 N LH SR, not according to
the NL-PCR Cement**

Provided by:

Hollandse Cement Maatschappij B.V.

MRPI® registration:

1.1.01033.2025

Program operator:

Stichting MRPI®

Publisher:

Stichting MRPI®

www.mrpi.nl

Date of first issue:

19-11-2025

Date of this issue:

19-11-2025

Expiry date:

19-11-2030

COMPANY INFORMATION

Hollandse Cement Maatschappij B.V.

Vlasweg 11

4782 PW

Moerdijk

Netherlands

0168 381 160

terminal@hcmcement.nl

<https://www.hcmcement.nl/nl/>

MRPI® REGISTRATION

1.1.01033.2025

DATE OF THIS ISSUE

19-11-2025

EXPIRY DATE

19-11-2030

SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by Gert-Jan Vroege, Eco Intelligence. The LCA study has been done by Odile Koenders, SGS Search. The certificate is based on an LCA-dossier according to EN15804+A2 (+indicators A1). It is verified according to the 'Verification protocol for MRPI LCA project report & EPD 21th of May 2025, V. 5.2'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PRODUCT

Hoogovencement CEM III/B 42,5 N LH SR, not according to the NL-PCR Cement

DECLARED UNIT / FUNCTIONAL UNIT

1 Mass (t)

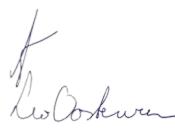
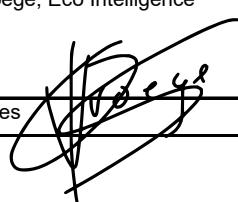
DESCRIPTION OF PRODUCT

Hoogovencement CEM III/B 42,5 N LH SR is made by mixing ground granulated blast furnace slag and Portland cement clinker, to which gypsum and/or anhydrite are added as a binding agent. Hoogovencement CEM III/B 42,5 N LH SR has a normal initial and final strength and can therefore be used when there are no special initial strength requirements.

VISUAL PRODUCT

PROGRAM OPERATOR

Stichting MRPI®



Kingsfordweg 151

1043 GR

Amsterdam

MORE INFORMATION

<https://www.hcmcement.nl/nl/producten/hoogovencement-br-cem-iii-b-42-5-n-lh-sr-br-hcm-cement-moerdijk-/>

Ing. L. L. Oosterveen MSc. MBA Managing Director MRPI	DEMONSTRATION OF VERIFICATION
	CEN standard EN15804 serves as the core PCR [1]
	Independent verification of the declaration and data according to EN15804+A2 (+indicators A1) Internal: _____ External: X
	Third party verifier: Gert-Jan Vroege, Eco Intelligence
	[1] PCR = Product Category Rules

DETAILED PRODUCT DESCRIPTION

Hoogovencement CEM III/B 42,5 N LH SR is made by mixing ground granulated blast furnace slag and Portland cement clinker, to which gypsum and/or anhydrite are added as binding agents.

Blast furnace slag is a by-product released during the production of iron in blast furnaces. In this process, iron ore, scrap and fluxes, together with cokes are fed into a blast furnace as fuel. The cokes is burned to produce carbon monoxide, which reduces the iron ore to molten iron. On this iron floats the slag, which is drained simultaneously with it. After slag and iron are separated, the slag is rapidly cooled by injecting a large quantity of water, which causes the slag to break up into sand-like granules with a glass-like structure (no or only slight crystallisation occurs). This process is called granulation.

Hoogovencement CEM III/B 42,5 N LH SR has a normal initial and final strength and can therefore be used when there are no special initial strength requirements. Due to its composition, this cement is very suitable for preventing alkali-silica reaction or sulphate attack. To confirm this, it is assigned the code 'SR' (sulphate resisting). Application of these cements produces a concrete with a very dense structure, preventing the penetration of harmful substances such as chlorides. The hydration of blast-furnace cement releases comparatively little heat, so it can be used well when there is a risk of cracking due to temperature stresses, for example in thick structures. The cement has therefore been given the special property 'LH', which stands for low hydration heat (low heat). Due to the influence of ambient temperature on the hydration rate, the hardening of blast-furnace cement concrete at very low temperatures is greatly delayed. In contrast, blast furnace cement is ideally suited for accelerating hardening by 'firing'.

The cement can be used in combination with all other cements based on Portland cement clinker. This, for example, to accelerate a concrete composition with this cement in the initial phase. In particular, applying a Portland cement CEM I 52.5 R can give very positive results at low outdoor temperatures.

Component (> 1%)	(kg / %)
Clinker	20-34%
Blast furnace slag	66-80%
Other	0-5%

SCOPE AND TYPE


This EPD is a specific EPD made for Hoogovencement produced in facility Moerdijk, The Netherlands. The material input are from suppliers across the globe. The data collection is done in production year 2023. The results are calculated with SimaPro 10.2.0.2, using the databases ecoinvent 3.6 and the NMD process database 3.9 (cut-off method system model) for the EN15804+A1 results and ecoinvent 3.9.1 and NMD process database 3.11 (cut-off method system model) for the EN15804+A2 results.

PRODUCT STAGE			CONSTRUCTION PROCESS STAGE		USE STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	x	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

X = Modules Assessed

ND = Not Declared

ENVIRONMENTAL IMPACT per functional unit or declared unit (indicators A1)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ADPE	kg Sb eq.	2,69E-04	1,95E-04	4,92E-05	5,13E-04	ND													
ADPF	MJ	2,37E+03	1,20E+02	4,23E+00	2,50E+03	ND													
GWP	kg CO2 eq.	2,92E+02	8,25E+00	3,55E-01	3,01E+02	ND													
ODP	kg CFC11 eq.	8,95E-06	1,45E-06	2,49E-08	1,04E-05	ND													
POCP	kg ethene eq.	7,93E-02	4,28E-03	2,54E-04	8,38E-02	ND													
AP	kg SO2 eq.	6,38E-01	2,76E-02	3,06E-03	6,69E-01	ND													
EP	kg (PO4)3 eq.	1,40E-01	5,10E-03	2,77E-04	1,45E-01	ND													

Toxicity indicators and ECI (Dutch market)

HTP	kg DCB eq.	3,30E+01	3,06E+00	1,02E+00	3,70E+01	ND												
FAETP	kg DCB eq.	4,46E-01	8,34E-02	1,84E-02	5,48E-01	ND												
MAETP	kg DCB eq.	2,35E+03	3,13E+02	4,28E+01	2,71E+03	ND												
TETP	kg DCB eq.	2,99E-01	1,14E-02	5,54E-02	3,66E-01	ND												
ECI	euro	2,20E+01	8,96E-01	1,33E-01	2,30E+01	ND												
ADPF	kg Sb eq.	1,14E+00	5,79E-02	2,03E-03	1,20E+00	ND												

ADPE = Abiotic Depletion Potential for non-fossil resources
 ADPF = Abiotic Depletion Potential for fossil resources
 GWP = Global Warming Potential
 ODP = Depletion potential of the stratospheric ozone layer
 POCP = Formation potential of tropospheric ozone photochemical oxidants
 AP = Acidification Potential of land and water
 EP = Eutrophication Potential
 HTP = Human Toxicity Potential
 FAETP = Fresh water aquatic ecotoxicity potential
 MAETP = Marine aquatic ecotoxicity potential
 TETP = Terrestrial ecotoxicity potential
 ECI = Environmental Cost Indicator
 ADPF = Abiotic Depletion Potential for fossil resources

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-total kg CO ₂ eq.	2,83E+02	9,31E+00	3,68E-01	2,93E+02	ND													
GWP-fossil kg CO ₂ eq.	2,83E+02	9,30E+00	3,66E-01	2,93E+02	ND													
GWP-biogenic kg CO ₂ eq.	3,76E-02	9,27E-03	1,29E-03	4,82E-02	ND													
GWP-luluc kg CO ₂ eq.	5,02E-02	7,39E-03	3,84E-04	5,80E-02	ND													
ODP kg CFC11 eq.	8,01E-06	1,91E-07	2,84E-08	8,23E-06	ND													
AP mol H ⁺ eq.	8,55E-01	3,24E-02	3,61E-03	8,91E-01	ND													
EP-freshwater kg P eq.	9,16E-03	7,94E-05	2,88E-05	9,27E-03	ND													
EP-marine kg N eq.	2,69E-01	1,12E-02	4,39E-04	2,80E-01	ND													
EP-terrestrial mol N eq.	3,56E+00	1,20E-01	4,89E-03	3,68E+00	ND													
POCP kg NMVOC eq.	7,77E-01	4,72E-02	1,48E-03	8,26E-01	ND													
ADP-minerals & metals kg Sb eq.	2,44E-04	2,65E-05	4,92E-05	3,19E-04	ND													
ADP-fossil MJ, net calorific value	2,13E+03	1,29E+02	3,98E+00	2,27E+03	ND													
WDP m ³ world Deprived	1,16E+01	6,47E-01	1,11E-01	1,24E+01	ND													

GWP-total = Global Warming Potential total
 GWP-fossil = Global Warming Potential fossil fuels
 GWP-biogenic = Global Warming Potential biogenictotal
 GWP-luluc = Global Warming Potential land use and land use change
 ODP = Depletion potential of the stratospheric ozone layer
 AP = Acidification Potential, Accumulated Exceedence
 EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment
 EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment
 EP-terrestrial = Eutrophication Potential, Accumulated Exceedence
 POCP = Formation potential of tropospheric ozone photochemical oxidants
 ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]
 ADP-fossil = Abiotic Depletion for fossil resources potential [1]
 WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PM	Disease incidence	4,18E-06	6,02E-07	2,84E-08	4,81E-06	ND													
IRP	kBq U235 eq.	7,86E+00	7,08E-02	1,43E-02	7,95E+00	ND													
ETP-fw	CTUe	4,47E+03	6,28E+01	2,70E+01	4,56E+03	ND													
HTP-c	CTUh	2,69E-08	4,28E-09	2,31E-09	3,35E-08	ND													
HTP-nc	CTUh	1,70E-06	8,27E-08	5,65E-08	1,84E-06	ND													
SQP	-	3,49E+02	8,02E+01	7,85E+00	4,37E+02	ND													

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	kg	9,67E-04	8,15E-04	2,61E-05	1,81E-03	ND												
NHWD	kg	4,96E+00	5,51E+00	4,07E-01	1,09E+01	ND												
RWD	kg	7,23E-03	4,67E-05	1,43E-05	7,29E-03	ND												
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND												
MFR	kg	2,23E-04	0,00E+00	8,26E-02	8,28E-02	ND												
MER	kg	2,65E-05	0,00E+00	8,55E-03	8,58E-03	ND												
EEE	MJ	0,00E+00	0,00E+00	8,10E-02	8,10E-02	ND												
ETE	MJ	0,00E+00	0,00E+00	1,39E-01	1,39E-01	ND												

HWD = Hazardous Waste Disposed
 NHWD = Non Hazardous Waste Disposed
 RWD = Radioactive Waste Disposed
 CRU = Components for reuse
 MFR = Materials for recycling
 MER = Materials for energy recovery
 EEE = Exported Electrical Energy
 ETE = Exported Thermal Energy

RESOURCE USE per functional unit or declared unit (A1 and A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	2,40E+02	2,19E+00	4,25E+00	2,46E+02	ND													
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
PERT	MJ	2,40E+02	2,19E+00	4,25E+00	2,46E+02	ND													
PENRE	MJ	2,28E+03	1,29E+02	0,00E+00	2,41E+03	ND													
PENRM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
PENRT	MJ	2,28E+03	1,29E+02	0,00E+00	2,41E+03	ND													
SM	kg	7,68E+01	0,00E+00	3,45E-03	7,68E+01	ND													
RSF	MJ	7,68E+01	0,00E+00	2,61E-05	7,68E+01	ND													
NSRF	MJ	9,70E+01	0,00E+00	4,07E-01	9,74E+01	ND													
FW	m3	2,34E+01	2,16E-02	1,43E-05	2,34E+01	ND													

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials
 PERM = Use of renewable primary energy resources used as raw materials
 PERT = Total use of renewable primary energy resources
 PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials
 PENRM = Use of non-renewable primary energy resources used as raw materials
 PENRT = Total use of non-renewable primary energy resources
 SM = Use of secondary materials
 RSF = Use of renewable secondary fuels
 NSRF = Use of non-renewable secondary fuels
 FW = Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
BBCpr	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													
BCCpa	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND													

BCCpr = Biogenic carbon content in product
 BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

Declared unit

The declared unit for the life cycle assessment is 1000 kg of Hoogovencement.

Data collection

Input- and output data has been provided by HCM of the production year 2023 for the following inventory categories:

- Materials (raw materials and auxiliary materials);
- Energy (electricity and heat);
- Emissions to air, water and soil;
- Treatment and disposal of production wastes.

Data quality

Data was validated by SGS at the process level. This means that not only the mass balance was verified, but that in the case of major deviations from the average (for all type of in- and output) the suppliers were asked for further explanation.

Allocations

Allocation of environmental interventions can apply to multi-input, multi-output, recycling and reuse processes. No allocation of multi output processes is applied in this study. For other allocations, the provisions from the EN 15804 are followed.

Cut-off criteria

This LCA contains all relevant data. The following processes are not included in this LCA:

- Assumed is that the maintenance and use of auxiliary equipment have a negligible contribution to the total (<1%). Because of this, these processes are not taken in account in this LCA, except such processes that are included in the Ecoinvent background data.
- Assumed is that the capital goods and infrastructure processes have a negligible contribution. These processes are not taken in account in this LCA, except such processes that are included in the Ecoinvent background data.

There is no reason to believe that relevant in- or outputs are excluded from this study.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Product stage (A1-A3)

This stage consists of the extraction of raw materials, energy which occurs upstream to the manufacturing process, transportation of raw materials, processing of the raw materials into the final product with all processes and energy required for production as well as packaging materials.

Data collection was performed by HCM in cooperation with their suppliers. The manufacturer compiled mass and energy balances based on average production in year 2023. The production facility in Moerdrecht uses renewable electricity in their production process.

DECLARATION OF SVHC

No substances of very high concern are present in concentrations greater than 0,1% by weight in the product.

REFERENCES

NMD Bepalingsmethode Milieuprestatie Bouwwerken 1.2, NMD Januari 2025.

EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

ISO, 2006. "Environmental management. Life cycle assessment - Principles and framework". ISO 14040:2006.

ISO, 2006. "Environmental management. Life cycle assessment – Requirements and Guidelines". ISO 14044:2006.

ISO, 2000. "Environmental labels and declarations – Type III environmental declarations", ISO/TR 14025:2000.

