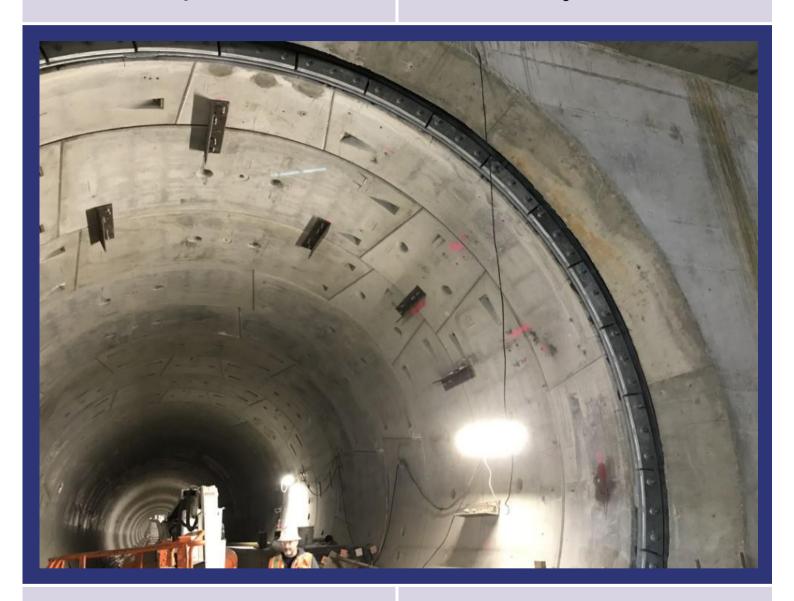


Environmental
Product
Declaration


According to EN15804+A2

This declaration is for:

Omega 420-110

Provided by:

Trelleborg Ridderkerk BV

MRPI® registration:

1.1.00993.2025

Program operator:

Stichting MRPI®

Publisher:

Stichting MRPI®

www.mrpi.nl

Date of first issue:

15-10-2025

Date of this issue:

15-10-2025

Expiry date:

15-10-2030

COMPANY INFORMATION

Trelleborg Ridderkerk BV

Fascinatio Boulevard 350

3065WB

Rotterdam

Netherlands

31 180 49 55 55

ayan.arinov@trelleborg.com

https://www.trelleborg.com/en

MRPI® REGISTRATION

1.1.00993.2025

DATE OF THIS ISSUE

15-10-2025

EXPIRY DATE

15-10-2030

SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by Tim Mol, EcoReview. The LCA study has been done by Ayan Arinov, Trelleborg Ridderkerk BV. The certificate is based on an LCA-dossier according to EN15804+A2. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PRODUCT

Omega 420-110

DECLARED UNIT / FUNCTIONAL UNIT

1 Layer thickness (m)

DESCRIPTION OF PRODUCT

Omega seal is a secondary seal for immersed tunnels to prevent water ingress by hydrostatic pressure.

VISUAL PRODUCT

PROGRAM OPERATOR

Stichting MRPI®

Kingsfordweg 151

1043 GR

Amsterdam

MORE INFORMATION

https://www.trelleborg.com/en/marine-and-infrastructure/products-solutions-and-services/infrastructure/seals/omega

Ing. L. L. Oosterveen MSc. MBA	DEMONSTRATION OF VERIFICATION	
Managing Director MRPI	CEN standard EN15804 serves as the core PCR [1]	
	Independent verification of the declaration an data	
	according to EN15804+A2	
	Internal: External: X	
\mathcal{F}_{α}	Third party verifier: Tim Mol, EcoReview	
LuCokur		
	[1] PCR = Product Category Rules	

DETAILED PRODUCT DESCRIPTION

This EPD covers a seal, model 420-110 produced by Trelleborg. The Omega seal is an engineered rubber compound made of synthetic rubber (SBR),carbon black (CB), and relevant additives. The Omega seal provides the unique properties to withstand high water pressure in combination with large movements in all directions. The Omega seal provides an ideal solution for joints where large gap movements are expected as a result of temperature effects and/or settlement. The seals are produced in Trelleborg's production site in Qingdao, China.

The reference unit for a seal is 1m of the Omega seal, which consists of 8.39kg of a rubber compound. Wooden boxes are used as a packaging material

Product specification	Omega 420-110
Product length [m]	1
Product weight per 1 m length [kg]	8.39
Packaging weight [kg]	2.52
Product service life [years]	200
Area of application	Immersed tunnels
Georgraphic region of manufacturing	China

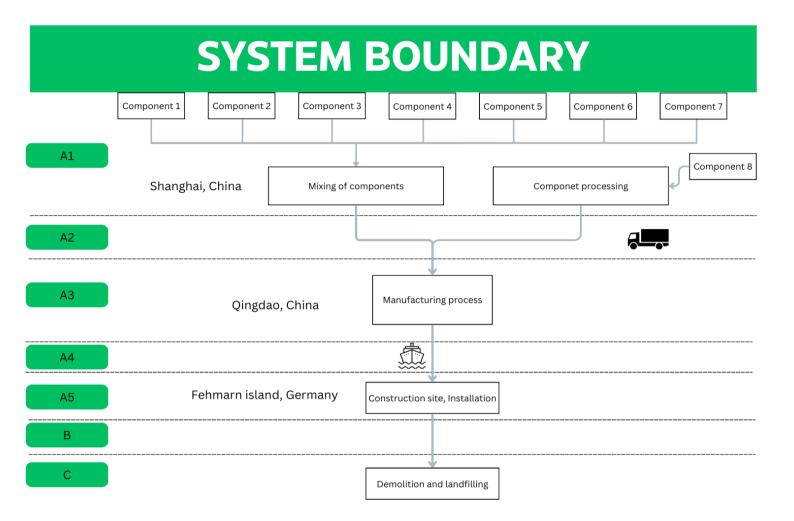
Component (>0,5%)	%
SBR	Confidential
Carbon black	Confidential
Oil	Confidential
Antioxidants	Confidential
Sulfur	Confidential

SCOPE AND TYPE

This EPD is a specific EPD made for Omega 420-110, produced in a factory in Qingdao, China. The material input is from suppliers across China. The product is intended for use in the Fehmarn Island tunnel, Germany - Denmark, Europe. At the end of its service life, the product is also assumed to reach its End-of-Life (EoL) stage in Europe.

Data collection was completed in 2024. The results are calculated with SimaPro 9.6.0.1, using the Ecoinvent 3.10 database (cut-off).

PROI	DUCT S	ΓAGE	CONSTRUC PROCESS S				US	SE STAC	GE			EN	D OF LI	FE STA	.GE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	esn	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
	Х	Х	Х	Х	Х	Х	Х	ND	ND	ND	ND	Х	Х	Х	Х	Х


X = Modules Assessed

ND = Not Declared

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

	Unit	A1	A2	А3	A1-A3		A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq.	3,55E+01	1,60E+00	5,11E+00	4,22E+01	2,49E+00	7,71E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	8,15E-01	2,42E-01	0,00E+00	3,05E+00	-2,16E-01
GWP-fossil	kg CO2 eq.	3,86E+01	1,60E+00	5,11E+00	4,53E+01	2,49E+00	4,58E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	8,15E-01	2,42E-01	0,00E+00	3,05E+00	-2,14E-01
GWP- biogenic	kg CO2 eq.	-3,13E+00	0,00E+00	0,00E+00	-3,13E+00	0,00E+00	3,13E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
GWP-luluc	kg CO2 eq.	1,44E-02	6,36E-04	2,05E-03	1,71E-02	1,30E-03	2,77E-03	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	8,12E-05	7,97E-05	0,00E+00	1,17E-03	-1,09E-03
ODP	kg CFC11 eq.	7,37E-07	2,25E-08	1,25E-08	7,72E-07	3,58E-08	4,00E-08	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,25E-08	4,84E-09	0,00E+00	1,49E-08	-1,85E-09
AP	mol H+ eq.	1,45E-01	5,47E-03	2,38E-02	1,75E-01	7,23E-02	2,56E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	7,32E-03	9,63E-04	0,00E+00	9,82E-03	-1,38E-03
EP-fresh water	kg PO4 eq.	5,22E-03	1,25E-04	1,38E-03	6,72E-03	8,04E-05	1,05E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,07E-05	1,62E-05	0,00E+00	1,14E-03	-7,67E-05
EP-marine	kg N eq.	2,99E-02	1,80E-03	4,82E-03	3,65E-02	1,80E-02	7,18E-03	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,39E-03	3,63E-04	0,00E+00	2,92E-03	-4,26E-04
EP- terrestrial	mol N eq.	2,55E-01	1,96E-02	5,01E-02	3,24E-01	2,00E-01	7,62E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,71E-02	3,95E-03	0,00E+00	3,25E-02	-4,71E-03
POCP	kg NMVOC eq.	1,41E-01	7,61E-03	1,39E-02	1,63E-01	5,42E-02	2,34E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,11E-02	1,47E-03	0,00E+00	9,46E-03	-1,48E-03
ADP- minerals & metals	kg Sb eq.	1,44E-04	5,12E-06	4,03E-06	1,53E-04	2,45E-06	6,26E-05	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	2,92E-07	7,77E-07	0,00E+00	8,03E-06	-4,55E-07
ADP-fossil	MJ, net calorific value	7,66E+02	2,24E+01	7,51E+01	8,64E+02	3,06E+01	5,01E+01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,07E+01	3,42E+00	0,00E+00	1,85E+01	-2,63E+00
WDP	m3 world eq. Deprived	1,18E+01	1,23E-01	5,85E-01	1,25E+01	9,31E-02	9,57E-01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,25E-02	1,90E-02	0,00E+00	3,57E-01	-3,48E-02

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels
GWP-biogenic = Global Warming Potential biogenictotal

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment
EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]

ADP-fossil = Abiotic Depletion for fossil resources potential [1]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

	Unit	A1	A2	A3	A1-A3	A 4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PM	Disease inci-dence	1,78E-06	1,27E-07	5,60E-07	2,46E-06	7,60E-08	4,77E-07	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	2,08E-07	1,96E-08	0,00E+00	1,03E-07	-7,03E-08
IRP	kBq U235 eq.	7,52E-01	1,84E-02	3,53E-01	1,12E+00	1,41E-02	2,00E-01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	6,02E-03	4,39E-03	0,00E+00	2,94E-02	-1,38E-02
ETP-fw	CTUe	1,45E+02	4,33E+00	2,48E+01	1,74E+02	3,93E+00	2,80E+01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,17E+00	7,36E-01	0,00E+00	2,12E+02	-8,11E-01
HTP-c	CTUh	2,02E-07	8,29E-09	1,09E-08	2,21E-07	1,05E-08	7,00E-08	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,18E-09	1,70E-09	0,00E+00	4,16E-09	-1,45E-09
HTP-nc	CTUh	2,05E-07	1,44E-08	2,34E-08	2,42E-07	8,02E-09	6,19E-08	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,48E-09	2,20E-09	0,00E+00	2,49E-08	-1,91E-09
SQP	-	4,65E+02	1,34E+01	1,46E+01	4,93E+02	2,82E+00	2,04E+01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	7,56E-01	2,03E+00	0,00E+00	1,93E+01	-2,49E+02

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

	Unit	A1	A2	A 3	A1-A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
HWD	kg	1,65E+00	3,93E-02	1,16E+00	2,85E+00	4,08E-02	6,31E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,20E-02	4,92E-03	0,00E+00	1,70E+01	-1,75E-02
NHWD	kg	2,50E+01	7,38E-01	7,74E+00	3,34E+01	5,56E-01	8,53E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,97E-01	1,04E-01	0,00E+00	1,69E+00	-3,50E-01
RWD	kg	1,83E-04	4,51E-06	8,66E-05	2,74E-04	3,44E-06	4,95E-05	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,54E-06	1,09E-06	0,00E+00	7,28E-06	-3,36E-06
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	4,28E-03	1,65E-04	1,62E-03	6,06E-03	3,60E-03	8,69E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	3,26E-05	2,57E-05	0,00E+00	2,22E-04	-7,53E-05
MER	kg	3,58E-05	1,45E-06	2,65E-06	3,99E-05	5,76E-07	3,55E-05	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,46E-07	2,17E-07	0,00E+00	2,63E-06	-2,07E-07
EEE	MJ	6,11E-02	1,63E-03	9,14E-04	6,36E-02	1,43E-03	1,36E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,70E-03	5,82E-04	0,00E+00	2,28E-03	-1,06E-03
ETE	MJ	1,06E-01	3,29E-03	3,99E-03	1,13E-01	1,01E-03	4,43E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	2,71E-04	8,43E-04	0,00E+00	2,08E-03	-2,56E-04

NHWD = Non Hazardous Waste Disposed
RWD = Radioactive Waste Disposed
CRU = Components for reuse
MFR = Materials for recycling
MER = Materials for energy recovery
EEE = Exported Electrical Energy
ETE = Exported Thermal Energy

=

Hazardous Waste Disposed

HWD

RESOURCE USE per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A 3	A1-A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	7,89E+01	2,94E-01	4,27E+00	8,35E+01	2,29E-01	7,05E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	8,50E-02	5,79E-02	0,00E+00	7,75E-01	-4,09E+01
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	7,89E+01	2,94E-01	4,27E+00	8,35E+01	2,29E-01	7,05E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	8,50E-02	5,79E-02	0,00E+00	7,75E-01	-4,09E+01
PENRE	MJ	7,66E+02	2,24E+01	7,51E+01	8,64E+02	3,06E+01	5,01E+01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,07E+01	3,42E+00	0,00E+00	1,85E+01	-2,64E+00
PENRM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	7,66E+02	2,24E+01	7,51E+01	8,64E+02	3,06E+01	5,01E+01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,07E+01	3,42E+00	0,00E+00	1,85E+01	-2,64E+00
SM	kg	1,24E+00	1,01E-02	6,37E-03	1,26E+00	1,46E-02	2,74E-01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	4,41E-03	1,57E-03	0,00E+00	4,65E-03	-2,25E-03
RSF	MJ	1,48E-03	1,28E-04	5,81E-05	1,66E-03	3,37E-05	1,03E-03	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	1,16E-05	1,98E-05	0,00E+00	1,02E-04	-1,83E-04
NSRF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m3	2,81E-01	3,00E-03	1,63E-02	3,00E-01	2,28E-03	2,81E-02	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	7,94E-04	4,68E-04	0,00E+00	8,70E-03	-9,28E-04

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NSRF = Use of non-renewable secondary fuels

FW = Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

_												•		,						
		Unit	A1	A2	A 3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
	BBCpr	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	ВССра	kg C	-8,53E-01	0,00E+00	0,00E+00	-8,53E-01	0,00E+00	8,53E-01	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

BCCpr = Biogenic carbon content in product

BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

No cut-offs were intentionally applied to inputs and outputs within the system boundaries of the models. All known energy and material flows within the system boundaries are considered.

Specific data was collected from Trelleborg's Qingdao facility through a questionnaire, covering details such as exact raw material composition, energy consumption, packaging, logistics (e.g., transport), and production information. The end-of-life scenario is based on industry practices for similar products. The data collection period for specific data was the year 2024.

As the manufacturing process takes place in China, country and region-specific datasets for electricity were used:

Electricity, low voltage {CN-SD}| electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted | EN15804, U for installed solar panels energy, SD- Shandong region;

Electricity, medium voltage {CN-ECGC}| market for electricity, medium voltage | EN15804, U for electricity grid, ECGC - East Grid where part of the manufacturing operation happens;

Electricity, medium voltage {CN-SWG}| market for electricity, medium voltage | EN15804, U for electricity grid, SWG - SouthWest grid, where part of the manufacturing operation happens.

Global warming potential of the electricity used	value
GWP-total of the electricity in kg CO2e/kWh	0.78
GWP-total [kg]	3.39
Total electricity used [kWh]	4.33

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

A1. Raw Material Supply

This module considers the extraction and processing of all raw materials and energy used upstream in the manufacturing process of the Omega 420-110 seal.

A2. Transport of Raw Materials to Manufacturer

This module accounts for the transportation of raw materials to the manufacturing facility via road. Distances and transport modes were modeled using primary data.

A3. Manufacturing

This stage describes the production process of Trelleborg's Omega seals, including the use of electricity, steam, and solar energy (via PV panels).

Data on seal production was collected from the manufacturing site. Transportation distances and modes for raw materials, packaging materials, and deliveries to customers were provided by Trelleborg and its suppliers.

The construction site data includes factors such as lights, heating, and office facilities. However, the manufacture of production equipment and infrastructure is excluded from the system boundary. Manufacturing waste and production loss treatment are included in this module.

A4. Transport to Customer

Seals are transported from the production facility to customers primarily via road and sea transport. Fehmarn Island has been chosen as the final destination for this assessment.

A5. Installation Process

This module covers the environmental aspects and impacts of attaching the seal to the tunnel block. The installation process involves building equipment such as drills and lifting machines, and their energy consumption is considered. Additionally, product packaging is discarded, and its waste treatment is included in this module.

B1 - B3 Use stage

- B1 (Use Stage), B2 (Maintenance) & B3 (Repair): The Omega seal is installed within tunnel blocks, which are then immersed to each other. As a result, no use, maintenance, or repair impacts are associated with these stages. No further inputs or outputs are related to the use stage, as there are no emissions from the products.
- C1. Deconstruction and demolition. This module includes the disassembly and demolition of the seal at the end of life. The removal of the gasket from the tunnel block is done using the building equipment.
- C2. Transport of waste. This module includes one-way transportation distance to a landfill site.
- C3. Waste processing and C4. Disposal The end-of-life stage is encompassed in these modules. The end-of-life scenario of the seal is based on the industry practices assumption. Due to the release of biogenic carbon as a result of landfilling the seals at the end of life, the result in module C4 was adjusted based on the biogenic uptake in modules A1-A3.
- D. Reuse, recovery, recycling potential Module D provides information on the potential burdens and benefits from recycling of the product packaging.

Scanario	Value
Product share goes to landfilling [%]	100
Distance to landfilling site [km]	150

DECLARATION OF SVHC

No SVHCs were present in the product or factory during the manufacturing of the materials in concentrations exceeding 0.1% w/w. This determination is based on engineering evaluations, testing conducted in a manufacturing facility, and supplier declarations.

REFERENCES

- 1. EN 15804:2012+A2:2019 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products:
- 2. ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines. International Organization for Standardization (ISO), 2006.
- 3. Ecoinvent Database, Version 3.10. Zurich: ecoinvent, 2025;
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures. International Organization for Standardization (ISO), 2006;
- 5. SimaPro 9.6 Software for Life Cycle Assessment. Amersfoort: PRé Sustainability, 2025;
- 6. International Reference Life Cycle Data System (ILCD) Handbook: General Guide for Life Cycle Assessment. Publications Office of the European Union, 2010.
- 7. Trelleborg Marine & Infrastructure. Omega Seal High-Performance Tunnel Sealing System [available at:https://www.trelleborg.com/en/marine-and-infrastructure/products-solutions-and-services/infrastructure/seals/omega], 2025;
- 8. Trelleborg Marine & Infrastructure. Omega Seal High-Performance Tunnel Sealing System datasheet [available at:https://www.trelleborg.com/marine-and-infrastructure/-/media/marine-systems/resources/brochures/downloads/omega-seals-leaflet.pdf?rev=50e5994b1779447c8d563786b819a8df], 2025.

