Environmental Product Declaration

According to EN15804+A2

This declaration is for: Nailclip 16-19 mm, 812R

Provided by: **Hekon**

MRPI® registration:

1.1.00971.2025

Program operator:

Stichting MRPI®

Publisher:

Stichting MRPI®

www.mrpi.nl

Date of first issue:

27-8-2025

Date of this issue:

27-8-2025

Expiry date:

27-8-2030

COMPANY INFORMATION

Hekon

Hulsenweg 2a

6031 SP

Nederweert

Netherlands

+31 (0)478 - 51 08 15

info@hekonbv.nl

https://www.hekonbv.nl/

MRPI® REGISTRATION

1.1.00971.2025

DATE OF THIS ISSUE

27-8-2025

EXPIRY DATE

27-8-2030

SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by Gert-Jan Vroege, Eco Intelligence. The LCA study has been done by Steven Simons, SGS INTRON B.V.. The certificate is based on an LCA-dossier according to EN15804+A2. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PRODUCT

Nailclip 16-19 mm, 812R

DECLARED UNIT / FUNCTIONAL UNIT

1 Piece

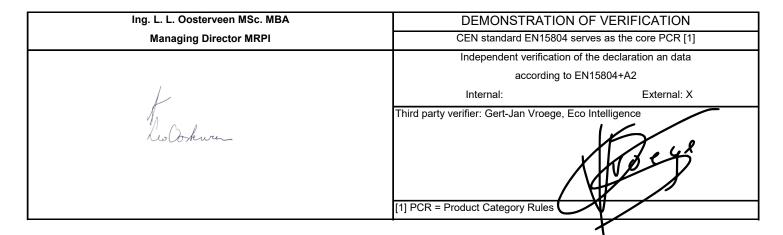
DESCRIPTION OF PRODUCT

A nailclip is a fastener used to neatly and securely route cables or pipes along walls or skirting boards. It consists of a plastic clip with a pre-mounted nail. The clip is placed over the cable and then secured to the wall or wood with the pail

VISUAL PRODUCT

MORE INFORMATION

https://t-plastique.com/


PROGRAM OPERATOR

Stichting MRPI®

Kingsfordweg 151

1043 GR

Amsterdam

DETAILED PRODUCT DESCRIPTION (PART 1)

Product: A nailclip is a fastener used to neatly and securely route cables or pipes along walls or skirting boards. It consists of a plastic clip with a pre-mounted nail. The clip is placed over the cable and then secured to the wall or wood with the nail.

Production (A1-A3): The injection molding process is a production technique for manufacturing plastic parts. Plastic granulate is first heated until it melts, after which the liquid material is injected into a closed mold under high pressure. The choice of material is crucial and depends on the required properties of the product. The mold determines the shape of the final product. After cooling, the plastic solidifies, and the molded product is removed from the mold. This process is fast, precise, and suitable for producing large quantities of identical products with complex shapes.

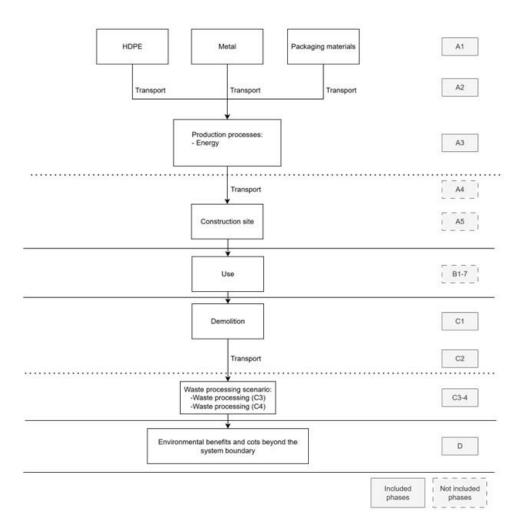
Reference service life: 25+ years

DETAILED PRODUCT DESCRIPTION (PART 2)

The energy processes used in the calculation are listed in the table below. The process used for the energy was: 25% Electricity, low voltage {NL}| electricity production, photovoltaic, 3kWp slanted-roof installation, single-Si, panel, mounted | Cut-off, U and 75% Electricity, low voltage {NL}| market for electricity, low voltage | Cut-off, U

Global warming potential of 1 kWh energy	Process	kg CO2eq
Production energy: Solar	Electricity, low voltage {NL} electricity production, photovoltaic, 3kWp slanted- roof installation, single-Si, panel, mounted Cut-off, U	0,11
Production energy: Netherlands	Electricity, low voltage {NL} market for electricity, low voltage Cut-off, U	0,496

SCOPE AND TYPE


The LCA for the nailclip includes modules A1-A3, C and D. All major steps of the extraction of raw materials, production and the end-of-life of the product are included in the scope of the study. This EPD is for a nailclip, a fastener used to neatly and securely route cables or pipes along walls or skirting boards. The nailclip is produced by Technique Plastique. The main production location is Nederweert, The Netherlands. The end-of-life scenario is according to the standard NMD waste processing for plastics (20% landfill and 80% incineration) and for metal (5% landfill, 5% incineration and 90% recycling). The LCA is produced with SimaPro v10 software and background database is Ecoinvent 3.9.1.

١	PROI	DUCT S	TAGE	CONSTRUC PROCESS S			Uŝ	SE STA	GE			EN	D OF LI	IFE STA	.GE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES	
	Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
	A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
	Χ	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	Χ	Х	Х	Х	Х

X = Modules Assessed

ND = Not Declared

REPRESENTATIVENESS

The EPD is representative for a nailclip, a fastener used to neatly and securely route cables or pipes along walls or skirting boards which is manufactured in Nederweert, The Netherlands.

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

	Unit	A1	A2	A3	A1-A3	A 4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-total	kg CO2 eq.	5,48E-03	5,72E-05	8,82E-04	6,42E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	4,52E-05	6,18E-04	3,72E-03	-3,18E-03
GWP-fossil	kg CO2 eq.	6,10E-03	5,69E-05	8,79E-04	7,04E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	4,50E-05	6,20E-04	3,72E-03	-3,20E-03
GWP- biogenic	kg CO2 eq.	-6,46E-04	8,87E-08	3,22E-06	-6,43E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	7,02E-08	-2,07E-06	1,49E-07	1,50E-05
GWP-luluc	kg CO2 eq.	2,67E-05	2,03E-07	3,57E-07	2,73E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	1,60E-07	4,37E-07	1,35E-08	2,25E-07
ODP	kg CFC11 eq.	9,83E-11	1,00E-12	4,65E-11	1,46E-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	8,00E-13	6,10E-12	1,10E-12	-1,55E-10
AP	mol H+ eq.	5,96E-05	2,72E-07	2,49E-06	6,24E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	2,15E-07	1,98E-06	5,11E-07	-4,23E-06
EP-fresh water	kg PO4 eq.	5,32E-07	5,66E-10	2,08E-08	5,53E-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	4,48E-10	1,17E-08	5,35E-10	7,90E-08
EP-marine	kg N eq.	7,45E-06	1,04E-07	4,68E-07	8,02E-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	8,19E-08	5,53E-07	2,48E-07	-1,05E-06
EP- terrestrial	mol N eq.	2,07E-04	1,10E-06	5,33E-06	2,13E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	8,73E-07	6,02E-06	2,61E-06	-1,55E-05
POCP	kg NMVOC eq.	2,68E-05	3,77E-07	2,72E-06	2,99E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	2,98E-07	2,18E-06	6,71E-07	-1,01E-05
ADP- minerals & metals	kg Sb eq.	1,33E-07	1,78E-10	5,40E-09	1,38E-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	1,41E-10	4,54E-09	8,57E-11	-1,24E-08
ADP-fossil	MJ, net calorific value	1,03E-01	8,15E-04	1,61E-02	1,20E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	6,44E-04	6,24E-03	4,51E-04	-4,27E-02
WDP	m3 world eq. Deprived	2,00E-03	4,45E-06	4,42E-04	2,45E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	3,52E-06	7,74E-05	7,69E-06	-1,54E-03

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels

GWP-biogenic = Global Warming Potential biogenictotal

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment
EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]

ADP-fossil = Abiotic Depletion for fossil resources potential [1]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

				1															
	Unit	A1	A2	A 3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
PM	Disease inci-dence	7,24E-10	5,60E-12	1,88E-11	7,49E-10	ND	0,00E+00	4,40E-12	3,86E-11	3,00E-12	-1,00E-10								
IRP	kBq U235 eq.	1,02E-04	3,18E-07	1,38E-05	1,16E-04	ND	0,00E+00	2,51E-07	8,64E-06	2,27E-07	1,44E-05								
ETP-fw	CTUe	6,28E-02	6,01E-04	3,72E-03	6,71E-02	ND	0,00E+00	4,76E-04	2,74E-03	1,46E-03	4,77E-03								
HTP-c	CTUh	2,87E-11	0,00E+00	4,00E-13	2,91E-11	ND	0,00E+00	0,00E+00	6,00E-13	1,00E-13	1,11E-11								
HTP-nc	CTUh	1,26E-10	7,00E-13	7,30E-12	1,34E-10	ND	0,00E+00	5,00E-13	7,80E-12	5,70E-12	9,14E-11								
SQP	-	3,42E-02	6,43E-04	8,57E-03	4,35E-02	ND	0,00E+00	5,09E-04	5,17E-03	3,34E-04	-1,82E-03								

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

	Unit	A1	A2	A 3	A1-A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
HWD	kg	8,74E-07	5,19E-09	1,24E-07	1,00E-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	4,11E-09	2,33E-08	5,19E-09	-3,28E-07
NHWD	kg	1,78E-03	5,38E-05	7,44E-05	1,91E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	4,26E-05	3,01E-04	4,19E-04	1,87E-04
RWD	kg	6,65E-08	1,86E-10	1,13E-08	7,79E-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	1,48E-10	6,41E-09	1,43E-10	9,57E-09
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	0,00E+00	1,41E-03	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	1,29E-03	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	9,30E-03	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,00E+00	0,00E+00	0,00E+00	1,60E-02	0,00E+00

HWD Hazardous Waste Disposed NHWD Non Hazardous Waste Disposed RWD Radioactive Waste Disposed CRU Components for reuse MFR Materials for recycling MER Materials for energy recovery EEE **Exported Electrical Energy Exported Thermal Energy** ETE

RESOURCE USE per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	1,03E-01	8,16E-04	1,61E-02	1,20E-01	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	6,45E-04	6,24E-03	4,51E-04	-4,27E-02
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	8,90E-03	1,15E-05	2,87E-03	1,18E-02	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	9,11E-06	3,71E-04	1,09E-05	3,01E-04
PENRE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	1,03E-01	8,16E-04	1,61E-02	1,20E-01	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	6,45E-04	6,24E-03	4,51E-04	-4,27E-02
SM	kg	7,60E-04	0,00E+00	0,00E+00	7,60E-04	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NSRF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m3	5,87E-05	1,97E-07	1,21E-05	7,10E-05	INA	INA	INA	INA	INA	INA	INA	INA	INA	0,00E+00	1,56E-07	2,40E-06	3,92E-07	-2,99E-05

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NSRF = Use of non-renewable secondary fuels

FW = Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

•									,										
	Unit	A1	A2	A 3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
BBCpr	kg C	0,00E+00	ND	ND	0,00E+00	ND													
ВССра	kg C	1,89E-04	ND	ND	1,89E-04	ND													

BCCpr = Biogenic carbon content in product

BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

Data quality requirements follow EN15804+A2:2019. Data is of reference period 2025, representing data for the production of one nailclip. Processes used in the background modelling are referring to Ecoinvent 3.9.1. The technological and geographical coverage reflects the physical reality as far as possible. Data quality is assessed as good on average and adequate to the goal and scope of the study. Cut-off criteria and allocation procedures: The waste treatment of the packaging is not included. No other cut-offs or allocation procedures were intentionally applied to inputs and outputs within the system boundaries in the models.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 1)

The product stage, A1-A3, includes the extraction and processing of raw materials for the product and the packaging, their transportation to the production site by truck and ship. Electricity consumption is modelled using primary data.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 2)

The end-of-life stage (C) is according to the standard NMD waste processing for plastics (20% landfill and 80% incineration) and for metal (5% landfill, 5% incineration and 90% recycling). Default waste transport distance is 100 km for landfill waste, 150 km for incineration and 50 km for recycling.

DECLARATION OF SVHC

No substances that are listed in the latest "Candidate List of Substances of Very High Concern for authorisation" are included in the product that exceed the limit for registration.

REFERENCES

Stichting nationale Milieudatabase, Bepalingsmethode Milieuprestatie Bouwwerken versie 1.2.

EN 15804:2012+A2:2019, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products, 2019.

ISO, ISO 14025:2006 Environmental labels and declarations — Type III environmental declarations — Principles and procedures, 2006.

SGS INTRON report: A163040/R20251340, August 2025

