

**Environmental
Product
Declaration**

According to ISO14025+EN15804 A2 (+indicators A1)

This declaration is for:

Walraven 4000 Clamp M8 BUP 160mm

Provided by:

J. van Walraven Holding B.V.

MRPI® registration:

1.1.00937.2025

Program operator:

Stichting MRPI®

Publisher:

Stichting MRPI®

www.mrpi.nl

Date of first issue:

15-5-2025

Date of this issue:

15-5-2025

Expiry date:

15-5-2030

COMPANY INFORMATION

J. van Walraven Holding B.V.
Industrieweg 5
3641 RK
Mijdrecht
Netherlands
+31(0) 297 233000
Arunkumar Kuppusamy (info.nl@walraven.com)
<https://www.walraven.com/int/>

MRPI® REGISTRATION

1.1.00937.2025

DATE OF THIS ISSUE

15-5-2025

EXPIRY DATE

15-5-2030

SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by Anne Kees Jeeninga , Advies Lab Vof. The LCA study has been done by Arunkumar Kuppusamy, J. van Walraven Holding B.V.. The certificate is based on an LCA-dossier according to ISO14025+EN15804 A2 (+indicators A1). It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PROGRAM OPERATOR

Stichting MRPI®
Kingsfordweg 151
1043 GR
Amsterdam

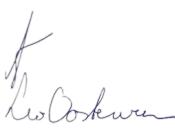
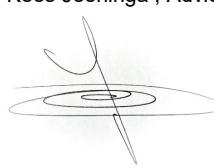
PRODUCT

Walraven 4000 Clamp M8 BUP 160mm

DECLARED UNIT / FUNCTIONAL UNIT

1 Piece

DESCRIPTION OF PRODUCT



Two-screw steel clamp with quick-locking system to prevent opening during installation. Includes removable spacer washers for sliding or anchoring. Inner profile protects pipes; oversized diameter allows for expansion. Made from steel 1.0332 with BIS UltraProtect® 1000 surface protection. Suitable for indoor/outdoor use; tested to 1,000 hours salt spray per ISO 9227.

VISUAL PRODUCT

MORE INFORMATION

<https://www.walraven.com/int/products/standard-clamps/>

Ing. L. L. Oosterveen MSc. MBA Managing Director MRPI	DEMONSTRATION OF VERIFICATION
	CEN standard EN15804 serves as the core PCR [1]
	Independent verification of the declaration and data according to ISO14025+EN15804 A2 (+indicators A1) Internal: <input checked="" type="checkbox"/> External: X
	Third party verifier: Anne Kees Jeeninga , Advies Lab Vof
	[1] PCR = Product Category Rules

DETAILED PRODUCT DESCRIPTION

The Walraven 4000 Clamp M8 BUP 160mm is a robust two-screw pipe clamp designed for plastic pipes (\varnothing 160 mm). Manufactured in the Mijdrecht, Netherlands, it features a quick-locking system, removable spacer washers for sliding or anchoring, and an internal profile to protect pipes. Made from steel 1.0332 with BIS UltraProtect® 1000 coating, it offers excellent durability and corrosion resistance for both indoor and outdoor applications, withstanding 1,000 hours of salt spray testing per ISO 9227.

Manufacturing Process:

The clamp begins with steel that's flattened and precision-cut to form the body, helping maintain structural integrity and strength throughout its lifespan. The upper and lower sections are then stamped and bent so they fit securely together around the pipe. A connecting nut is resistance welded onto the body to provide a strong, reliable threaded connection during installation. To guard against corrosion, the entire clamp receives a durable zinc coating that meets EN ISO 9227 performance standards. In the final assembly stage, locking screws, nuts, a POM anti-loss washer, and a PP nut holder are all pre-installed, simplifying the installation process and ensuring a secure, ready-to-use product straight out of the box.

Electricity usage references:

Reference: 0569-pro & Elektriciteit, Nederlandse mix, bij consument, per kWh (73% grijs, 27% hernieuwbaar), Database: Ecoinvent v3.6 (Cut-off, NMD+EI), GWP : 0.389 kg CO₂eq/kWh

Reference: 0573-pro & Elektriciteit, hernieuwbaar, uit PV, bij consument, per kWh, Database: Ecoinvent v3.6 (Cut-off, NMD+EI), GWP : 0.095 kg CO₂-eq /kWh

Environmental and Installation Features:

Corrosion Protection: The zinc coating offers effective corrosion resistance, eliminating the need for additional on-site treatments and reducing environmental impact.

Sustainability Compliance: The manufacturing process adheres to high sustainability standards, with environmental product declarations (EPD) in accordance with EN 15804+A2:2019 and ISO 14025.

Packaging and Transport:

Packaging: The Walraven 4000 Clamp is delivered in standardized cardboard boxes with clear labeling for easy identification and transport.

Installation Readiness: The product is fully assembled, requiring no further preparation before installation.

Name - Half parts	
Steel - Lower part	
Steel - Upper part	
Steel - Hollow pan head screw	
Steel - Nut	
Plastic - Nut holder	
Plastic - Anti-loss washer	
Plastic- Spacer 5000 cream	

Total Weight	226 g
--------------	-------

Component (> 1%)	(%)
Steel (combined)	94,60%

SCOPE AND TYPE

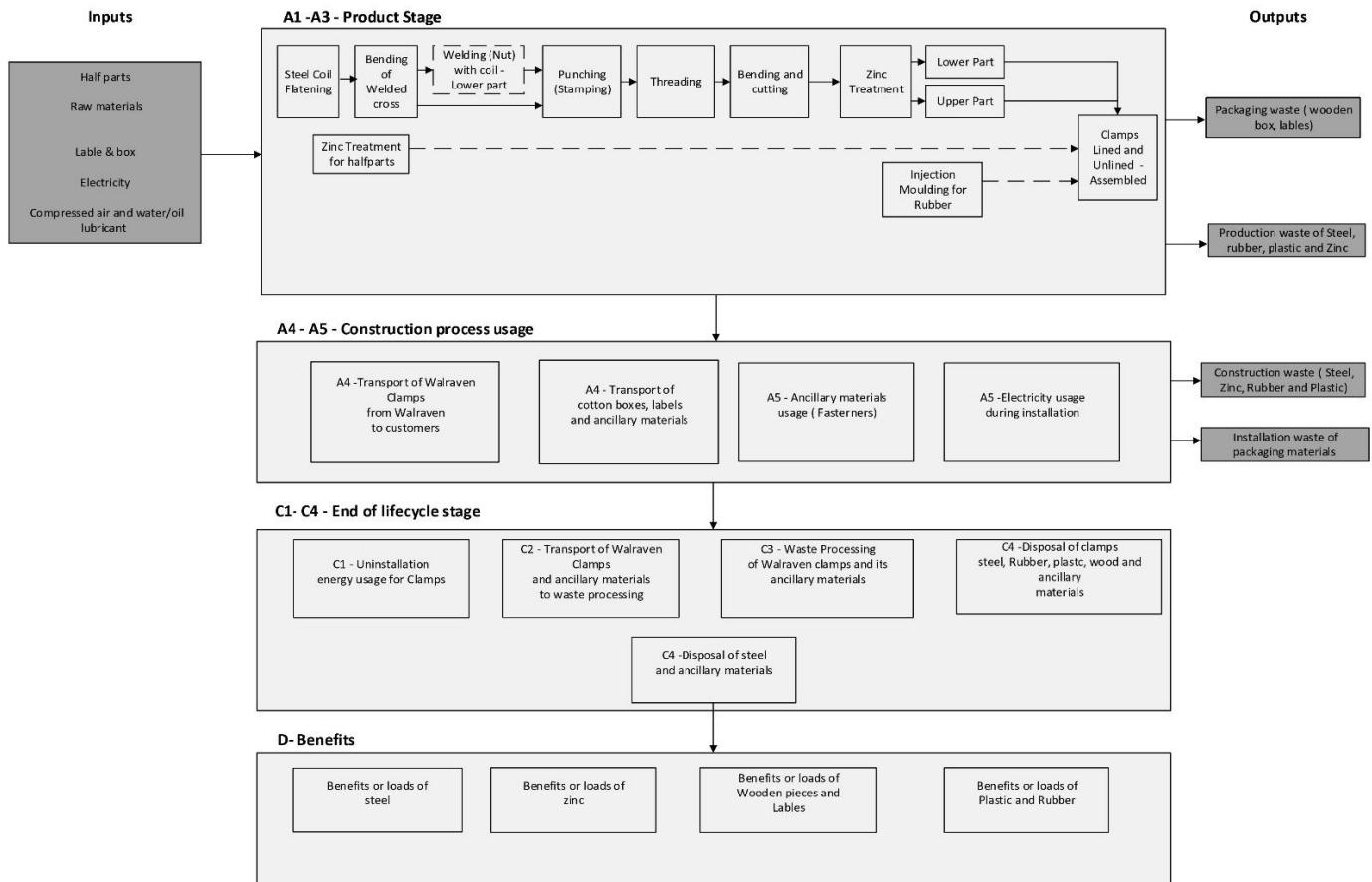
This study involves conducting a comprehensive Life Cycle Assessment (LCA) for the Walraven Clamps, aiming to analyze all life cycle phases from Cradle to Grave (A1–D) using the best available data. The assessment follows the full scope of LCA, meaning the product is evaluated not as a standalone item, but as part of a broader system aggregated with other materials and processed into other products. Consequently, the clamp becomes an integral component of a Declared Unit.

The LCA is performed using the Ecochain Helix software, leveraging background data from authoritative sources such as the Dutch Nationale Milieu Database v3.8 (based on Ecoinvent 3.6) and adhering to the NMD Bepalingsmethode 1.2 (2025) standard. This rigorous methodology ensures a detailed and transparent examination of the environmental impact of the Walraven Clamps across their entire life cycle from the extraction of raw materials (Cradle) through production, installation, and use, to final disposal or recycling (Grave).

The system boundary includes all relevant stages, up to and including Module D (benefits and loads beyond the system boundary). It excludes operational energy use (B6) and water consumption (B7) during the use phase. The environmental impact is declared per one piece of Walraven Clamp, inclusive of ancillary materials, installation, internal transport, and waste processing.

The reference service life is assumed to be 50 years, based on internal product owner data and supported by the European Technical Assessment (ETA) for Walraven 4000 Clamp M8 BUP 160mm, which confirms a minimum working life of 50 years under appropriate usage and maintenance conditions.

All significant inputs and outputs such as emissions, energy consumption, and material flows are accounted for. Materials representing less than 1% of the product's total weight may be excluded unless they are expected to contribute more than 5% to any environmental impact category. The cumulative environmental impact of excluded materials shall not exceed 5% for any given category.


This comprehensive approach ensures a scientifically sound and holistic understanding of the Walraven Clamp's environmental footprint throughout its full life cycle.

PRODUCT STAGE			CONSTRUCTION PROCESS STAGE		USE STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport gate to site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	x	x	x	x	ND	ND	ND	ND	ND	ND	ND	x	x	x	x	x

X = Modules Assessed

ND = Not Declared

REPRESENTATIVENESS

The aggregation was done by choosing the reference product as Walraven 4000 Clamp M8 BUP 160mm. The remaining products which are aggregated in the same group by following the 20% allocation and worst case scenario as per the EN 15804+A2 & NMD Bepalingsmethode v1.2 (2025) are listed below:

Walraven Bifix® 5000 Clamp G2 BUP EPDM green M8/10 135mm
 Walraven Bifix® G2 Clamp BUP M8/10 152-160mm
 Walraven Bifix® 5000 Clamp G2 BUP EPDM green M8/10 125mm
 Walraven 4000 Clamp M8 BUP 160mm
 Walraven 4000 Clamp M8 zinc plated 160mm
 Walraven Bifix® 5000 Clamp G2 BUP EPDM green M8/10 110mm
 Walraven Bifix® G2 Clamp BUP M8/10 133-140mm
 Walraven 3000 Clamp zinc plated M8 125mm
 Walraven Bifix® G2 Clamp BUP M8/10 125-130mm
 Walraven 3000 Clamp zinc plated M8 110mm
 Walraven 4000 Clamp M8 BUP 125mm
 Walraven 4000 Clamp M8 zinc plated 125mm
 Walraven Sprinkler Clamp TA41 FM/UL M10 4" (DN100)
 Walraven Duplo Double Pipe Clamp pre-galvanized 1 1/4"

ENVIRONMENTAL IMPACT per functional unit or declared unit (indicators A1)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
ADPE	kg Sb eq.	1,49E-02	4,45E-06	4,28E-07	1,50E-02	1,16E-07	7,02E-04	ND	0,00E+00	1,93E-07	3,39E-07	6,38E-10	-9,19E-04						
ADPF	MJ	1,67E+01	2,67E+00	4,29E-01	1,98E+01	6,94E-02	8,65E-01	ND	0,00E+00	1,16E-01	8,43E-02	1,93E-03	-2,75E+00						
GWP	kg CO ₂ eq.	1,13E+00	1,74E-01	2,34E-02	1,33E+00	4,54E-03	5,74E-02	ND	0,00E+00	7,56E-03	9,51E-03	6,87E-05	-2,06E-01						
ODP	kg CFC11 eq.	8,22E-08	3,09E-08	2,27E-09	1,15E-07	8,05E-10	5,49E-09	ND	0,00E+00	1,34E-09	8,54E-10	2,27E-11	-8,63E-09						
POCP	kg ethene eq.	9,22E-04	1,06E-04	2,07E-07	1,03E-03	2,74E-06	3,29E-05	ND	0,00E+00	4,56E-06	5,37E-06	7,27E-08	-3,83E-04						
AP	kg SO ₂ eq.	7,06E-03	7,77E-04	3,97E-05	7,87E-03	1,99E-05	3,56E-04	ND	0,00E+00	3,32E-05	5,98E-05	4,98E-07	-8,60E-04						
EP	kg (PO ₄) ₃ eq.	1,02E-03	1,52E-04	7,09E-06	1,17E-03	3,92E-06	5,41E-05	ND	0,00E+00	6,53E-06	7,67E-06	9,66E-08	-1,10E-04						

Toxicity indicators and ECI (Dutch market)

HTP	kg DCB eq.	1,94E+00	7,35E-02	2,16E-03	2,02E+00	1,91E-03	9,47E-02	ND	0,00E+00	3,18E-03	7,46E-03	3,34E-05	-1,34E-01						
FAETP	kg DCB eq.	4,32E-02	2,14E-03	8,59E-05	4,54E-02	5,58E-05	2,24E-03	ND	0,00E+00	9,29E-05	1,48E-04	2,22E-06	-8,38E-04						
MAETP	kg DCB eq.	7,91E+01	7,71E+00	3,41E-01	8,72E+01	2,01E-01	4,29E+00	ND	0,00E+00	3,34E-01	6,24E-01	2,83E-03	-2,59E+00						
TETP	kg DCB eq.	1,17E-02	2,60E-04	1,82E-04	1,21E-02	6,75E-06	1,04E-03	ND	0,00E+00	1,13E-05	2,31E-05	8,37E-08	8,66E-03						
ECI	euro	2,84E-01	2,11E-02	1,67E-03	3,07E-01	5,47E-04	1,41E-02	ND	0,00E+00	9,11E-04	1,54E-03	9,95E-06	-2,77E-02						
ADPF	kg Sb eq.	8,02E-03	1,28E-03	2,06E-04	9,51E-03	3,34E-05	4,16E-04	ND	0,00E+00	5,56E-05	4,05E-05	9,28E-07	-1,32E-03						

ADPE = Abiotic Depletion Potential for non-fossil resources
 ADPF = Abiotic Depletion Potential for fossil resources
 GWP = Global Warming Potential
 ODP = Depletion potential of the stratospheric ozone layer
 POCP = Formation potential of tropospheric ozone photochemical oxidants
 AP = Acidification Potential of land and water
 EP = Eutrophication Potential
 HTP = Human Toxicity Potential
 FAETP = Fresh water aquatic ecotoxicity potential
 MAETP = Marine aquatic ecotoxicity potential
 TETP = Terrestrial ecotoxicity potential
 ECI = Environmental Cost Indicator
 ADPF = Abiotic Depletion Potential for fossil resources

ENVIRONMENTAL IMPACT per functional unit or declared unit (core indicators A2)

Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq.	1,16E+00	1,76E-01	-3,41E-03	1,34E+00	4,58E-03	5,70E-02	ND	ND	ND	ND	ND	ND	0,00E+00	7,63E-03	9,62E-03	7,00E-05	-2,19E-01
GWP-fossil	kg CO ₂ eq.	1,16E+00	1,76E-01	2,34E-02	1,36E+00	4,57E-03	5,79E-02	ND	ND	ND	ND	ND	ND	0,00E+00	7,62E-03	9,59E-03	6,99E-05	-2,18E-01
GWP-biogenic	kg CO ₂ eq.	6,07E-03	6,56E-05	-5,00E-07	6,14E-03	1,71E-06	3,05E-04	ND	ND	ND	ND	ND	ND	0,00E+00	2,84E-06	6,44E-03	4,49E-08	0,00E+00
GWP-luluc	kg CO ₂ eq.	2,67E-03	6,46E-05	-5,55E-07	2,73E-03	1,68E-06	1,38E-04	ND	ND	ND	ND	ND	ND	0,00E+00	2,79E-06	7,02E-06	1,95E-08	1,39E-05
ODP	kg CFC11 eq.	8,37E-08	3,88E-08	2,47E-09	1,25E-07	1,01E-09	6,07E-09	ND	ND	ND	ND	ND	ND	0,00E+00	1,68E-09	9,73E-10	2,85E-11	-7,21E-09
AP	mol H ⁺ eq.	8,72E-03	1,03E-03	5,35E-05	9,80E-03	2,65E-05	4,45E-04	ND	ND	ND	ND	ND	ND	0,00E+00	4,42E-05	7,46E-05	6,60E-07	-1,06E-03
EP-freshwater	kg PO ₄ eq.	9,95E-05	1,77E-06	4,55E-07	1,02E-04	4,62E-08	4,59E-06	ND	ND	ND	ND	ND	ND	0,00E+00	7,69E-08	4,21E-07	7,93E-10	-1,05E-05
EP-marine	kg N eq.	1,86E-03	3,62E-04	1,09E-05	2,24E-03	9,35E-06	1,04E-04	ND	ND	ND	ND	ND	ND	0,00E+00	1,56E-05	1,65E-05	2,28E-07	-2,08E-04
EP-terrestrial	mol N eq.	2,07E-02	3,99E-03	1,65E-04	2,49E-02	1,03E-04	1,15E-03	ND	ND	ND	ND	ND	ND	0,00E+00	1,72E-04	1,92E-04	2,52E-06	-2,40E-03
POCP	kg NMVOC eq.	6,26E-03	1,14E-03	2,68E-05	7,43E-03	2,94E-05	3,15E-04	ND	ND	ND	ND	ND	ND	0,00E+00	4,91E-05	5,23E-05	7,30E-07	-1,25E-03
ADP-minerals & metals	kg Sb eq.	1,49E-02	4,45E-06	4,28E-07	1,50E-02	1,16E-07	7,02E-04	ND	ND	ND	ND	ND	ND	0,00E+00	1,93E-07	3,39E-07	6,38E-10	-9,19E-04
ADP-fossil	MJ, net calorific value	1,55E+01	2,65E+00	3,98E-01	1,85E+01	6,90E-02	8,47E-01	ND	ND	ND	ND	ND	ND	0,00E+00	1,15E-01	8,60E-02	1,95E-03	-1,86E+00
WDP	m ³ world Deprived	8,32E-01	9,47E-03	5,38E-03	8,46E-01	2,47E-04	3,87E-02	ND	ND	ND	ND	ND	ND	0,00E+00	4,11E-04	1,02E-03	8,13E-05	-7,36E-02

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels

GWP-biogenic = Global Warming Potential biogenictotal

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment

EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]

ADP-fossil = Abiotic Depletion for fossil resources potential [1]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL IMPACT per functional unit or declared unit (additional indicators A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PM	Disease incidence	7,11E-08	1,58E-08	8,22E-11	8,70E-08	4,11E-10	3,85E-09	ND	0,00E+00	6,85E-10	9,29E-10	1,29E-11	-1,19E-08						
IRP	kBq U235 eq.	8,22E-02	1,11E-02	6,61E-04	9,40E-02	2,89E-04	4,72E-03	ND	0,00E+00	4,82E-04	4,27E-04	8,13E-06	-8,49E-04						
ETP-fw	CTUe	1,56E+02	2,36E+00	2,13E-01	1,58E+02	6,15E-02	7,23E+00	ND	0,00E+00	1,03E-01	4,04E-01	1,89E-03	-1,44E+01						
HTP-c	CTUh	7,52E-09	7,68E-11	-1,12E-11	7,58E-09	2,00E-12	3,68E-10	ND	0,00E+00	3,33E-12	9,41E-12	3,39E-14	-2,27E-10						
HTP-nc	CTUh	1,46E-07	2,58E-09	1,58E-10	1,48E-07	6,73E-11	8,89E-09	ND	0,00E+00	1,12E-10	4,30E-10	1,40E-12	2,90E-08						
SQP	-	6,53E+00	2,30E+00	5,03E-01	9,33E+00	5,98E-02	4,56E-01	ND	0,00E+00	9,97E-02	1,69E-01	4,14E-03	-5,50E-01						

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)

Unit		A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	kg	1,93E-03	6,71E-06	1,56E-06	1,94E-03	1,75E-07	8,99E-05	ND	0,00E+00	2,91E-07	2,57E-07	2,87E-09	-1,41E-04						
NHWD	kg	2,96E-01	1,68E-01	7,55E-04	4,65E-01	4,38E-03	2,35E-02	ND	0,00E+00	7,29E-03	2,49E-03	1,28E-02	-2,29E-02						
RWD	kg	6,30E-05	1,74E-05	6,30E-07	8,11E-05	4,53E-07	4,05E-06	ND	0,00E+00	7,55E-07	5,04E-07	1,28E-08	-1,71E-06						
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
MFR	kg	0,00E+00	0,00E+00	1,51E-04	1,51E-04	0,00E+00	7,55E-06	ND	0,00E+00	0,00E+00	2,32E-01	0,00E+00	0,00E+00						
MER	kg	0,00E+00	0,00E+00	5,31E-06	5,31E-06	0,00E+00	2,65E-07	ND	0,00E+00	0,00E+00	0,00E+00	1,34E-03	0,00E+00						
EEE	MJ	0,00E+00	0,00E+00	3,36E-04	3,36E-04	0,00E+00	1,68E-05	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,01E-02						
ETE	MJ	0,00E+00	0,00E+00	1,96E-04	1,96E-04	0,00E+00	9,78E-06	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,84E-03						

HWD = Hazardous Waste Disposed

NHWD = Non Hazardous Waste Disposed

RWD = Radioactive Waste Disposed

CRU = Components for reuse

MFR = Materials for recycling

MER = Materials for energy recovery

EEE = Exported Electrical Energy

ETE = Exported Thermal Energy

RESOURCE USE per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	1,79E+00	3,32E-02	1,58E-01	1,99E+00	8,64E-04	9,83E-02	ND	0,00E+00	1,44E-03	1,34E-02	2,30E-05	-3,48E-02						
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
PERT	MJ	1,79E+00	3,32E-02	1,58E-01	1,99E+00	8,64E-04	9,83E-02	ND	0,00E+00	1,44E-03	1,34E-02	2,30E-05	-3,48E-02						
PENRE	MJ	1,65E+01	2,82E+00	4,35E-01	1,97E+01	7,33E-02	9,03E-01	ND	0,00E+00	1,22E-01	9,12E-02	2,07E-03	-1,94E+00						
PENRM	MJ	3,24E-02	0,00E+00	0,00E+00	3,24E-02	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
PENRT	MJ	1,65E+01	2,82E+00	4,35E-01	1,97E+01	7,33E-02	9,03E-01	ND	0,00E+00	1,22E-01	9,12E-02	2,07E-03	-1,94E+00						
SM	kg	1,04E-01	0,00E+00	4,58E-05	1,04E-01	0,00E+00	2,29E-06	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
NSRF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
FW	m3	2,51E-02	3,23E-04	1,77E-04	2,56E-02	8,40E-06	1,19E-03	ND	0,00E+00	1,40E-05	4,49E-05	2,11E-06	-1,80E-03						

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NSRF = Use of non-renewable secondary fuels

FW = Use of net fresh water

BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
BBCpr	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
BCCpa	kg C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00							

BCCpr = Biogenic carbon content in product

BCCpa = Biogenic carbon content in packaging

CALCULATION RULES

Data Quality

Data flows reflect actual or best estimate industrial practices.

Primary Data Usage: Collected from Walraven's production and sourcing departments. Where primary data was unavailable, secondary data from Ecoinvent 3.6 and NMD 3.8 was utilized.

Reference Selection: In cases where specific supplier data was not supplied, generic references and literature sources filled the gap.

2. Data Collection Period

The modelling is representative of production conditions in 2023 and 2024.

3. Methodology & Reproducibility

Approach: Based on EN 15804+A2 (v1.2) and NMD Bepalingsmethode v1.2 (2025).

Grouping Principle: If the environmental impact of the Walraven 4000 Clamp M8 BUP 160mm falls within $\pm 20\%$ of a reference product's impact, grouping may be justifiable. Given its size, it is unlikely to fall within 20% and might require independent modelling or a new worst-case scenario.

Data Sources: Internal templates and material specification sheets; fallback to standard database references for steel and rubber components where supplier data is missing.

4. Inventory and Allocation

System Boundaries: Modular, cradle-to-grave model aligned with EN 15804+A2 and NMD 2025.

Material Streams: Includes galvanized steel, rubber lining (if applicable), and any coating/powder treatments.

Energy & Transport: Transport distances from steel providers and intermediaries are included. Installation is treated per standard EN scenario assumptions.

5. Allocation Strategy

Worst case Methodology: If grouped with smaller 4000 Clamps, the 160 mm variant might serve as the new worst-case reference.

Allocation Threshold: Followed the 20% deviation guidance; otherwise, this clamp will be treated as a separate entity in the inventory.

6. Data Sources

Primary: Walraven's production, logistics, and planning departments.

Secondary: Generic steel data from Ecoinvent 3.6 and NMD 3.8, particularly for unprovided raw material specifics.

Additional: Transport scenarios and end-of-life aligned with NEN-EN15804+A2, version 1.2 (2025).

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Modules A1–A3 cover the upstream and manufacturing stages of the Walraven 4000 Clamp M8 BUP 160mm. Module A1 includes raw material extraction, pre-processing, and packaging inputs. Modeling is based on 2023–2024 production data. The clamp is composed of steel (multiple grades), with BUP surface treatment, and includes zinc coatings and removable spacer washers. Data is sourced from NMD v3.8 and Ecoinvent v3.6, using generic datasets where primary data was unavailable. Steel content follows standard NMD assumptions of 57% primary and 43% secondary material.

Module A2 models the transport of raw materials to the Walraven production site in Mijdrecht. All transport calculations are in line with EN 15804+A2:2019/AC:2021 and assume an average load factor of 50%, representing a full trip to the site and an empty return. Modeled distances reflect the sourcing of major components. Zinc coating materials are assumed to travel 100 km, with an additional 100 km secondary transport applied to several materials. Transport emissions are modeled using the reference dataset “0001-tra&Transport, vrachtwagen (freight, lorry, unspecified {GLO})” from NMD v3.8 and Ecoinvent v3.6.

Module A3 represents the manufacturing processes at the Walraven Mijdrecht facility, incorporating electricity (from both the grid and rooftop solar panels), fuels, packaging materials, and production waste. Zinc treatment requires dedicated electricity, and auxiliary materials such as lubricating oil are used.

Steel scrap generated during production is partly recycled, with quantities scaled based on the Mijdrecht facility's production share of total output. Waste transport to treatment and disposal facilities was accounted for. Capital goods were excluded under the cutoff rule in EN 15804+A2, as their contribution to the total environmental footprint was below 5%.

Module A4 covers distribution from production to installation locations. A default 150 km transport distance was used, in line with Bepalingsmethode v1.2 (2025). Modeling assumes a 50% load factor, and emissions were calculated using: 0001-tra&Transport, vrachtwagen, from NMD v3.8 / Ecoinvent v3.6.

Module A5 includes activities during installation. A 5% material loss was assumed for steel, plastic, and rubber due to on-site inefficiencies. Installation is manual, and no additional energy inputs were modeled. Waste transport distances are: Steel: 100 km to landfill and Rubber/Plastic: 100 km to AVI (incineration).

Fixed values for waste distribution were used per Bepalingsmethode v1.2:

Material	Leave	Landfill	Incineration (AVI)	Recycling	Reuse
Steel, Zinc	0%	5%	0%	95%	0%
Rubber/Plastic	0%	0%	100%	0%	0%

End-of-Life (Modules C1–C4 and D)

Module C1 assumes manual deconstruction of the clamp, with no energy consumption modeled during dismantling.

Module C2 covers the transport of end-of-life materials. Steel and zinc are transported 50 km to either recycling facilities or landfill sites, while rubber and plastic components are assumed to travel 100 km to AVI incineration plants. All transport emissions are modeled using the standard NMD freight dataset “0001-tra&Transport, vrachtwagen” (NMD v3.8 / Ecoinvent v3.6).

Module C3 represents waste processing. Steel and zinc are assumed to be fully sorted and recycled, while plastic and rubber undergo complete incineration with energy recovery. Emissions are modeled using the following datasets: “0264-avC&Verbranden kunststoffen (28.67 MJ/kg)” for plastics, “0315-reC&Sorteren en persen oud ijzer” for steel, and “0260-avC&Verbranden rubber/EPDM (27.2 MJ/kg)” for rubber. These datasets are consistent with NMD v3.8 and Ecoinvent v3.6.

Module C4 accounts for residual disposal. A residual fraction of 5% of both steel and zinc is assumed to be landfilled. The datasets applied are “0253-sto&Stort staal” for steel and “0248-sto&Stort koper, lood, verzinkt staal, zink” for zinc.

Module D quantifies the environmental benefits beyond the life cycle boundary. Steel recycling provides a 52% substitution benefit, reflecting a 95% recycling rate offset against the 43% already accounted for as secondary material. Zinc recycling is modeled with a 95% substitution benefit. For rubber and plastic, incineration is credited with a 100% energy substitution benefit due to recovery of energy from combustion.

This modeling approach complies with EN 15804:2012+A2:2019/AC:2021 and is consistent with Bepalingsmethode v1.2 (2025). All datasets are derived from verified Walraven site records and modeled using NMD v3.8 and Ecoinvent v3.6.

DECLARATION OF SVHC

No substances that are listed in the latest "Candidate List of Substances of Very High Concern for authorisation" are included in the product that exceeds the limit for registration

REFERENCES

- [1] ISO, ISO 14040: Environmental management – Life cycle assessment – Principles and Framework, ISO 14040:2006 + Amd 1:2020, International Organization for Standardization, 2020.
- [2] ISO, ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines, ISO 14044:2006 + Amd 2:2020, International Organization for Standardization, 2020.
- [3] ISO, ISO 14025: Environmental labels and declarations – Type III environmental declarations – Principles and procedures, ISO 14025:2006, International Organization for Standardization, 2006.
- [4] European Technical Assessment (ETA) for Walraven Bifix® G2 Clamps, Walraven, Mijdrecht, 2024.
- [5] NMD, Bepalingsmethode 'Milieuprestatie Bouwwerken' versie 1.2 inclusief de bijbehorende wijzigingsbladen, Nationale Milieudatabase, 2025.
- [6] CE Delft, Handboek Schaduwlijsten, 2010. [Online]. Available: <https://ce.nl/publicaties/handboek-schaduwlijsten-waardering-en-weging-van-emissies-en-milieueffecten/>
- [7] TNO, Toxiciteit heeft z'n prijs: schaduwlijsten voor (eco-)toxiciteit en uitputting van abiotische grondstoffen binnen DuboCalc. [Online]. Available: https://puc.overheid.nl/rijkswaterstaat/doc/PUC_119145_31/
- [8] NEN, NEN-EN 15804: Duurzaamheid van bouwwerken – Milieuverklaringen van producten – Basisregels voor de productgroep bouwproducten, NEN-EN 15804:2012 + A2:2019 + AC:2021, Nederlands Normalisatie-instituut, 2021.
- [9] P. P. Lahoti and V. D. M., Lubrication in cold rolling of steel, Journal of Materials Processing Technology, vol. 209, no. 9, pp. 4638–4642, 2009.
- [10] F. G. H. van Wees, J. V. B., J. O. P. R., Energy Consumption for Steel Production, in World Energy Conference, Cannes, Nov. 1986.
- [11] The Engineering Toolbox, 2001. [Online]. Available: <https://www.engineeringtoolbox.com/>
- [12] NMD, Environmental Performance Assessment Method for Construction Works, January 2025. [Online]. Available: https://milieudatabase.nl/wp-content/uploads/2022/05/Bepalingsmethode_Milieuprestatie_Bouwwerken_maart_2022_Engels.pdf

