Environmental Product Declaration

According to ISO14025+EN15804+A2

This declaration is for:

**Windstopper Connect** 

Provided by:

**Swisspearl Group AG** 



MRPI® registration:

1.1.00913.2025

Program operator:

Stichting MRPI®

Publisher:

**Stichting MRPI®** 

www.mrpi.nl

Date of first issue:

20-7-2025

Date of this issue:

20-7-2025

Expiry date:

20-7-2030





### **COMPANY INFORMATION**

Swisspearl Group AG

Eternitstrasse 3

8867

Niederurnen

Switzerland

+ 41 55617 1160

info@swisspearl.com

https://www.swisspearl.com/

#### **MRPI® REGISTRATION**

1.1.00913.2025

#### **DATE OF THIS ISSUE**

20-7-2025

#### **EXPIRY DATE**

20-7-2030

#### SCOPE OF DECLARATION

This MRPI®-EPD certificate is verified by Mantijn van Leeuwen, Nibe. The LCA study has been done by Chantal Houben, SGS INTRON. The certificate is based on an LCA-dossier according to ISO14025+EN15804+A2. It is verified according to the 'MRPI®-EPD verification protocol November 2020.v4.0'. EPDs of construction products may not be comparable if they do not comply with EN15804+A2. Declaration of SVHC that are listed on the 'Candidate list of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

## **PROGRAM OPERATOR**

Stichting MRPI®

Kingsfordweg 151

1043 GR

Amsterdam

#### **PRODUCT**

Windstopper Connect

#### **DECLARED UNIT / FUNCTIONAL UNIT**

1 Productiveness (m2)

### **DESCRIPTION OF PRODUCT**

The Windstopper Connect is a fiber cement building board that has a tongue & groove system allowing for assembly without screws. The Windstopper Connect is used in wall construction as wind barrier boards. It shields underlying insulation and construction against fire, rain and wind.

#### **VISUAL PRODUCT**



### MORE INFORMATION

https://www.swisspearl.com/nl-nl/producten/bouwplaten/bouw-productzoeker/windstopper-connect

| Ing. L. L. Oosterveen MSc. MBA | DEMONSTRATION OF VERIFICATION                       |  |
|--------------------------------|-----------------------------------------------------|--|
| Managing Director MRPI         | CEN standard EN15804 serves as the core PCR [1]     |  |
|                                | Independent verification of the declaration an data |  |
| /                              | according to ISO14025+EN15804+A2                    |  |
|                                | Internal: External: X                               |  |
| 1/1 00 1/1                     | Third party verifier: Mantijn van Leeuwen, Nibe     |  |
| lo Cokwa                       |                                                     |  |
|                                |                                                     |  |
|                                | [1] PCR = Product Category Rules                    |  |







### **DETAILED PRODUCT DESCRIPTION (PART 1)**

The Windstopper Connect is a fiber cement building board that has a tongue & groove system allowing for assembly without screws.

The Windstopper Connect is used in wall construction as wind barrier boards. It shields underlying insulation and construction against fire, rain and wind. Swisspearl fibre cement boards are produced according to a flow-on method,.

The base materials are processed into a homogeneous mixture with water and applied to a running endless felt loop, from which part of the water is filtered through the felt material. The evacuated water is returned to the process, and no wastewater is produced. The format roller is gradually covered by layers of fibre cement. When the required thickness of the boards is reached, it is applied to a format roll which is gradually covered by layers of fibre cement material. Once the required thickness is reached, the fibre cement layer is taken from the roll, cut, piled and compressed. After the drying process the products are ready to be cut to customised size, ending with quality controls and packing processes.

The thickness of the board is 9mm. The products are packaged in plastic and delivered on pallets. The pallets are reused and therefore only their weight in transport was accounted for in the calculation. The fiber cement boards have a reference service lifetime of 50 years according to the BBSR.

### **DETAILED PRODUCT DESCRIPTION (PART 2)**

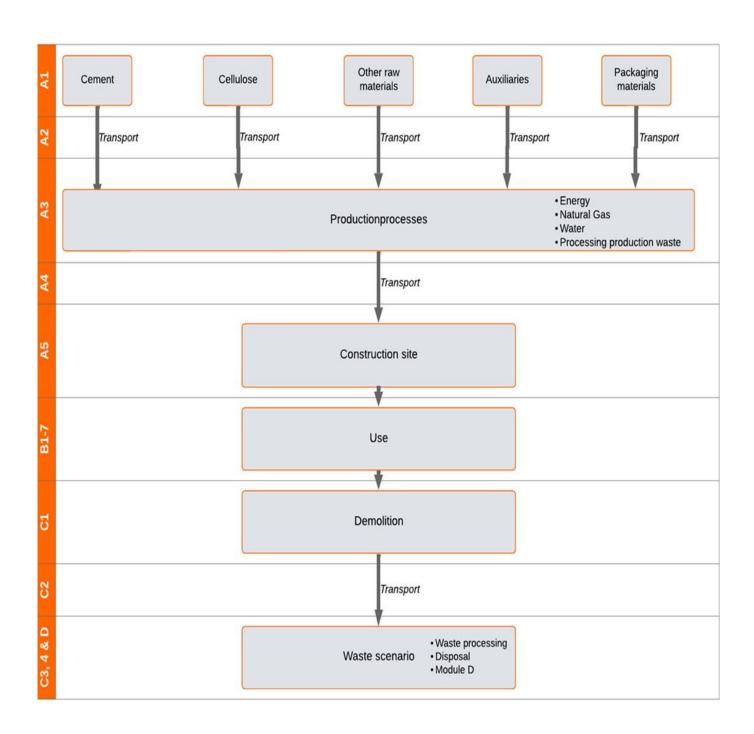
The energy process used in the calculation is listed in the table below.

| Global warming potential (GWP) of 1 kWh energy | Process                                                                               | GWP (kg CO2eq) |
|------------------------------------------------|---------------------------------------------------------------------------------------|----------------|
|                                                | Electricity, low voltage {FI} <br>market for electricity, low<br>voltage   Cut-off, U | 0,235          |

### **SCOPE AND TYPE**

The product was made in Finland, Lohja. The calculations were done for the Dutch and are also applicable for the European market. The end-of-life was also calculated for Europe.

The LCA software used in Simapro with the background database Ecoinvent 3.9.1 allocation, cut-off by classification – unit were used. For some basic processes, the SimaPro file of the National Environmental Database version 3.9 were also use. This EPD is a product specific.


| PROI                  | DUCT S      | ΓAGE            | CONSTRUC<br>PROCESS S    |            |        |             | Uŝ     | SE STAG     | GE            |                        |                         | END OF LIFE STAGE            |             |                    |            | BENEFITS AND<br>LOADS BEYOND<br>THE SYSTEM<br>BOUNDARIES |
|-----------------------|-------------|-----------------|--------------------------|------------|--------|-------------|--------|-------------|---------------|------------------------|-------------------------|------------------------------|-------------|--------------------|------------|----------------------------------------------------------|
| P Raw material supply | Z Transport | ⊗ Manufacturing | F Transport gate to site | G Assembly | esn B1 | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | و Operational water use | Q De-construction demolition | S Transport | S Waste processing | 중 Disposal | Reuse - Recovery - Recycling potential                   |
|                       |             |                 |                          |            |        |             |        |             |               |                        |                         |                              |             |                    |            |                                                          |

X = Modules Assessed

ND = Not Declared







## **REPRESENTATIVENESS**

The product is only produced at one production site in Finland. This EPD is representative for 1 m2 of Windstopper Connect.





## **S***<b>UISSPEARL*

## **ENVIRONMENTAL IMPACT** per functional unit or declared unit (core indicators A2)

|                              | TOTTIM                        |           | _ 110111 7 | acı pı     | or rain   | otiona   | dilit (  | 71 GOO!  | ui ou c | , interest | 010 1110 | arouto | 0742) |    |          |          |          |           |           |
|------------------------------|-------------------------------|-----------|------------|------------|-----------|----------|----------|----------|---------|------------|----------|--------|-------|----|----------|----------|----------|-----------|-----------|
|                              | Unit                          | A1        | A2         | <b>A</b> 3 | A1-A3     | A4       | A5       | B1       | B2      | В3         | B4       | B5     | В6    | В7 | C1       | C2       | C3       | C4        | D         |
| GWP-total                    | kg CO2 eq.                    | 4,38E+00  | 4,04E-01   | 1,35E+00   | 6,13E+00  | 4,06E+00 | 3,07E-01 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 1,97E-01 | 9,67E-02 | 1,65E+00 | 2,55E-02  | -5,16E-02 |
| GWP-fossil                   | kg CO2 eq.                    | 5,89E+00  | 4,02E-01   | 1,36E+00   | 7,65E+00  | 4,04E+00 | 2,86E-01 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 1,97E-01 | 9,64E-02 | 1,84E-02 | 8,98E-03  | -5,15E-02 |
| GWP-<br>biogenic             | kg CO2 eq.                    | -1,62E+00 | 0,00E+00   | -1,55E-02  | -1,64E+00 | 0,00E+00 | 1,75E-02 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 0,00E+00 | 0,00E+00 | 1,63E+00 | 1,65E-02  | 0,00E+00  |
| GWP-luluc                    | kg CO2 eq.                    | 1,13E-01  | 1,40E-03   | 5,53E-03   | 1,20E-01  | 1,44E-02 | 3,61E-03 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 2,22E-05 | 3,44E-04 | 4,15E-06 | 1,51E-05  | -6,13E-05 |
| ODP                          | kg CFC11<br>eq.               | 5,49E-08  | 7,12E-09   | 9,27E-08   | 1,55E-07  | 7,19E-08 | 4,84E-09 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 3,13E-09 | 1,72E-09 | 4,14E-10 | 1,53E-10  | -5,45E-10 |
| AP                           | mol H+ eq.                    | 1,68E-02  | 2,23E-03   | 3,37E-03   | 2,24E-02  | 1,96E-02 | 7,58E-04 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 1,83E-03 | 4,62E-04 | 1,16E-04 | 5,79E-05  | -3,55E-04 |
| EP-fresh<br>water            | kg PO4 eq.                    | 1,33E-04  | 3,93E-06   | 2,88E-05   | 1,66E-04  | 4,01E-05 | 5,05E-06 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 7,11E-07 | 9,59E-07 | 3,64E-07 | 1,11E-07  | -1,74E-06 |
| EP-marine                    | kg N eq.                      | 5,28E-03  | 8,01E-04   | 6,78E-04   | 6,76E-03  | 7,42E-03 | 2,41E-04 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 8,45E-04 | 1,75E-04 | 4,92E-05 | 2,38E-05  | -1,06E-04 |
| EP-<br>terrestrial           | mol N eq.                     | 5,20E-02  | 8,58E-03   | 7,67E-03   | 6,82E-02  | 7,91E-02 | 2,46E-03 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 9,20E-03 | 1,87E-03 | 5,39E-04 | 2,55E-04  | -1,22E-03 |
| POCP                         | kg NMVOC<br>eq.               | 1,38E-02  | 2,86E-03   | 3,31E-03   | 1,99E-02  | 2,70E-02 | 7,21E-04 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 2,72E-03 | 6,39E-04 | 1,60E-04 | 8,02E-05  | -3,65E-04 |
| ADP-<br>minerals &<br>metals | kg Sb eq.                     | 6,27E-05  | 1,23E-06   | 8,84E-06   | 7,28E-05  | 1,26E-05 | 2,20E-06 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 6,87E-08 | 3,02E-07 | 7,45E-08 | 1,88E-08  | -2,51E-07 |
| ADP-fossil                   | MJ, net<br>calorific<br>value | 3,05E+01  | 5,73E+00   | 3,01E+01   | 6,63E+01  | 5,79E+01 | 2,14E+00 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 2,58E+00 | 1,38E+00 | 2,52E-01 | 1,21E-01  | -6,37E-01 |
| WDP                          | m3 world<br>eq.<br>Deprived   | 1,28E+00  | 3,08E-02   | 3,43E-01   | 1,65E+00  | 3,15E-01 | 5,03E-02 | 0,00E+00 | ND      | ND         | ND       | ND     | ND    | ND | 5,56E-03 | 7,54E-03 | 1,38E-03 | -3,59E-03 | -3,05E-02 |
| CMD                          |                               |           |            | _          |           | M/       | Datas    |          |         |            |          |        |       |    | _        |          |          |           |           |

GWP-total = Global Warming Potential total

GWP-fossil = Global Warming Potential fossil fuels
GWP-biogenic = Global Warming Potential biogenictotal

GWP-luluc = Global Warming Potential land use and land use change

ODP = Depletion potential of the stratospheric ozone layer

AP = Acidification Potential, Accumulated Exceedence

EP-freshwater = Eutrophication Potential, fraction of nutrients reaching freshwater end compartment
EP-marine = Eutrophication Potential, fraction of nutrients reaching marine end compartment

EP-terrestrial = Eutrophication Potential, Accumulated Exceedence

POCP = Formation potential of tropospheric ozone photochemical oxidants

ADP-minerals & metals = Abiotic Depletion Potential for non-fossil resources [1]

ADP-fossil = Abiotic Depletion for fossil resources potential [1]

WDP = Water (user) deprivation potential, deprivation-weighted water consumption [1]

Disclaimer [1]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.





## **ENVIRONMENTAL IMPACT** per functional unit or declared unit (additional indicators A2)

|        | Unit               | A1       | A2       | А3       | A1-A3    | <b>A4</b> | A5       | B1       | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | C3       | C4       | D         |
|--------|--------------------|----------|----------|----------|----------|-----------|----------|----------|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| PM     | Disease inci-dence | 1,25E-07 | 3,89E-08 | 1,99E-08 | 1,83E-07 | 3,98E-07  | 7,70E-09 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 5,09E-08 | 9,52E-09 | 2,82E-09 | 6,25E-09 | -6,60E-09 |
| IRP    | kBq U235<br>eq.    | 8,50E-02 | 2,21E-03 | 4,02E-01 | 4,89E-01 | 2,25E-02  | 1,47E-02 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 5,27E-04 | 5,39E-04 | 2,87E-04 | 5,11E-05 | -1,41E-03 |
| ETP-fw | CTUe               | 1,80E+01 | 4,20E+00 | 3,15E+00 | 2,53E+01 | 4,27E+01  | 8,68E-01 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 1,23E+00 | 1,02E+00 | 8,46E-02 | 7,84E-02 | -2,37E-01 |
| HTP-c  | CTUh               | 1,58E-09 | 2,12E-10 | 4,76E-10 | 2,27E-09 | 2,14E-09  | 7,48E-11 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 6,03E-11 | 5,11E-11 | 5,80E-12 | 1,15E-11 | -4,06E-11 |
| HTP-nc | CTUh               | 5,11E-08 | 4,53E-09 | 1,27E-08 | 6,83E-08 | 4,64E-08  | 2,23E-09 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 4,19E-10 | 1,11E-09 | 1,17E-10 | 2,82E-10 | -5,20E-10 |
| SQP    | -                  | 1,64E+01 | 4,42E+00 | 6,47E+00 | 2,72E+01 | 4,56E+01  | 8,67E-01 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 1,74E-01 | 1,09E+00 | 3,38E-02 | 8,98E-02 | -7,97E-01 |

PM = Potential incidence of disease due to PM emissions

IRP = Potential Human exposure efficiency relative to U235 [1]

ETP-fw = Potential Comparative Toxic Unit for ecosystems [2]

HTP-c = Potential Comparative Toxic Unit for humans, cancer [2]

HTP-nc = Potential Comparative Toxic Unit for humans, non-cancer [2]

SQP = Potential soil quality index [2]

#### Disclaimer [1]:

- This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste.

## Disclaimer [2]:

- The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.





## **OUTPUT FLOWS AND WASTE CATEGORIES per functional unit or declared unit (A1 en A2)**

|      | Unit | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1       | B2 | В3 | B4 | В5 | В6 | В7 | C1       | C2       | C3       | C4       | D         |
|------|------|----------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| HWD  | kg   | 9,08E-05 | 3,64E-05 | 7,58E-05 | 2,03E-04 | 3,69E-04 | 7,06E-06 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 1,74E-05 | 8,80E-06 | 1,30E-06 | 7,33E-07 | -2,73E-06 |
| NHWD | kg   | 2,54E-01 | 3,69E-01 | 8,84E-02 | 7,12E-01 | 3,81E+00 | 2,68E-02 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 3,69E-03 | 9,12E-02 | 3,77E-02 | 5,97E-03 | -7,18E-03 |
| RWD  | kg   | 6,51E-05 | 1,29E-06 | 1,83E-04 | 2,49E-04 | 1,32E-05 | 7,51E-06 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 2,83E-07 | 3,16E-07 | 2,42E-07 | 3,08E-08 | -9,00E-07 |
| CRU  | kg   | 0,00E+00 | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |
| MFR  | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 3,53E-01 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 1,18E+01 | 0,00E+00 | 0,00E+00  |
| MER  | kg   | 0,00E+00 | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |
| EEE  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,45E-01 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |
| ETE  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 2,50E-01 | 0,00E+00 | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  |

HWD Hazardous Waste Disposed NHWD Non Hazardous Waste Disposed **RWD** Radioactive Waste Disposed CRU Components for reuse MFR Materials for recycling MER Materials for energy recovery EEE **Exported Electrical Energy** ETE **Exported Thermal Energy** 





## RESOURCE USE per functional unit or declared unit (A1 and A2)

|       | Unit | A1       | A2       | <b>A</b> 3 | A1-A3    | <b>A4</b> | A5       | B1       | B2  | В3  | B4  | B5  | В6  | В7  | C1       | C2       | C3       | C4        | D         |
|-------|------|----------|----------|------------|----------|-----------|----------|----------|-----|-----|-----|-----|-----|-----|----------|----------|----------|-----------|-----------|
| PERE  | MJ   | 8,15E+00 | 8,00E-02 | 4,46E+00   | 1,27E+01 | 8,17E-01  | 3,83E-01 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 1,47E-02 | 1,95E-02 | 2,10E-02 | 2,07E-03  | -4,72E-02 |
| PERM  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| PERT  | MJ   | 8,15E+00 | 8,00E-02 | 4,46E+00   | 1,27E+01 | 8,17E-01  | 3,83E-01 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 1,47E-02 | 1,95E-02 | 2,10E-02 | 2,07E-03  | -4,72E-02 |
| PENRE | MJ   | 3,07E+01 | 5,74E+00 | 3,00E+01   | 6,64E+01 | 5,79E+01  | 2,14E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 2,58E+00 | 1,38E+00 | 2,52E-01 | 1,21E-01  | -6,37E-01 |
| PENRM | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| PENRT | MJ   | 3,07E+01 | 5,74E+00 | 3,00E+01   | 6,64E+01 | 5,79E+01  | 2,14E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 2,58E+00 | 1,38E+00 | 2,52E-01 | 1,21E-01  | -6,37E-01 |
| SM    | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| RSF   | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| NSRF  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00   | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| FW    | m3   | 4,21E-02 | 1,36E-03 | 1,99E-02   | 6,33E-02 | 1,40E-02  | 1,93E-03 | 0,00E+00 | INA | INA | INA | INA | INA | INA | 2,02E-04 | 3,34E-04 | 6,95E-05 | -6,93E-05 | -1,71E-02 |

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NSRF = Use of non-renewable secondary fuels

FW = Use of net fresh water

## BIOGENIC CARBON CONTENT per functional unit or declared unit (A1 and A2)

|       | Unit | <b>A1</b> | A2 | А3       | A1-A3    | <b>A4</b> | <b>A</b> 5 | B1 | B2 | В3 | В4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D  |
|-------|------|-----------|----|----------|----------|-----------|------------|----|----|----|----|----|----|----|----|----|----|----|----|
| BBCpr | kg C | 4,82E-01  | ND | ND       | 4,82E-01 | ND        | ND         | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
| ВССра | kg C | ND        | ND | 4,22E-03 | 4,22E-03 | ND        | ND         | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |

BCCpr = Biogenic carbon content in product

BCCpa = Biogenic carbon content in packaging







#### **CALCULATION RULES**

Primary data at the production location was collected for the base year 2024.

The materials or processes that have been excluded from the study (cut-off rule is well below 1%), are wooden pallets and the waste processing of packaging on incoming materials.

The environmental interventions have been determined using the methods described in the Determination Method. The LCA calculations are performed in accordance with EN 15804:2012+A2:2019. When calculating the energy flows, the fuels and electricity sources used, extraction and transport of the fuels, efficiency of the conversion and distribution of the energy flow are taken into account. The calorific net value (LHV) has also been calculated.

The rules for allocation for multi-input, -output, recycling and reuse processes from the Assessment Method have been followed for all materials. Ecoinvent processes are calculated including the infrastructure processes (capital goods). Ecoinvent processes for landfill are calculated excluding long-term emissions.

## SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 1)

This calculation of the production includes everything needed to procure the raw materials needed in the production of these products.

This includes extraction, treatment, processing, electricity and heat consumption. Wooden pallets were omitted from the final analysis, since it was assumed, they would be reused and have a minimal impact. The transport for the wooden pallets has been added. Transport of the raw material was done mostly by truck. Some raw materials were partially transported by ship and train. The waste processing of production waste was also taken into account into the calculation.

| Transport | Process                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| Truck     | Transport, freight, lorry,<br>unspecified {GLO}  market<br>group for transport, freight,<br>lorry, unspecified   Cut-off, U |
| Ship      | Transport, freight, sea, container ship {GLO}  market for transport, freight, sea, container ship   Cut-off, U              |
| Train     | Transport, freight train {GLO} <br>market group for   Cut-off, U                                                            |

## SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 2)

Transport to the construction site uses a standard transport as described in the Assessment Method.

Materials for attachment were considered, only if they are added to the product by Swisspearl during production.

The distance is to the construction site is calculated from the factory to Utrecht. At the construction site, there is no additional transport included in the model since the fiber cement board have a relatively low weight. The fiber cement boards are mounted on either a wood or steel construction.

The wood, steel or another construction to install the boards on is not considered, since they can vary significantly and can not be influenced by Swisspearl.

The Windstopper Connect is charactarized by a tongue and groove system. During the production, butyl is added in the grooves to ensure that moisture is kept out when the boards are installed. Waste treatment and transportation of the packaging waste from the construction site to the municipal waste incinerator is included in this module.

The distance to the waste treatment facility is assumed to be 50 km. The standard process from the Assessment Metod is used for truck transport. Additionally, according to the Assessment Method there is a loss of 3% of material for pre-fab products on the construction site. This means that extra material must be added to account for the loss of product.







### **SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION (PART 3)**

An excavator was modeled to demolish and transport the waste on the demolition site from the fiber cement boards. After being demolished on the building site, the material is transported to waste processing. All the material gets processed before getting recycled or landfilled.

| End of life scenario | Percentage | Transport distance (km) | Process                                                                                                                                                                 |
|----------------------|------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste processing     | 100%       | 50                      | 0270-reC&Breken, per kg<br>steenachtig (o.b.v. SBK<br>Breken steenachtig MRPI) -<br>NMDv3.9                                                                             |
| Landfill             | 1%         | 100                     | Waste cement-fibre slab<br>{RoW}  market for waste<br>cement-fibre slab   Cut-off, U                                                                                    |
| Recycling            | 99%        | 0                       | 0271-reD&Module D, grind,<br>per kg NETTO geleverd<br>granulaat/grind (vermeden:<br>Gravel, round {RoW}  gravel<br>and sand quarry operation  <br>Cut-off, U) - NMDv3.9 |

#### **DECLARATION OF SVHC**

The product does not contain any substances of very high concern (SVHC) at concentrations greater than 0.1% of the product mass, in accordance with Regulation (EC) No. 1907/2006 (REACH), as of 20-07-2025

## **REFERENCES**

Nationale Milieudatabase, "Bepalingsmethode Milieuprestatie Bouwwerken", December 2024

Nationale Milieudatabase, "NMD-Toetsingsprotocol opname data in de nationale milieudatabase", versie 1.2 december 2024

EN 15804 (incl. A1:2013 and A2:2019), "Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

ISO 14040, "Environmental management - Environmental management -- Life cycle assessment - Principles and framework", ISO14040:2006

ISO 14044, "Environmental management - Life cycle assessment - Requirements and guidelines", ISO14044:2006

International Organization for Standardization, ISO/DIS 21930, "Sustainability in building construction – Environmental declaration of building products", ISO/DIS 21930:2007

International Organization for Standardization, ISO/TR 14025, "Environmental labels and declarations – Type III environmental declarations", ISO/TR 14025:2000

SGS INTRON report: A161820/R20251234, June 2025



