

program operator **Stichting MRPI®** publisher **Stichting MRPI®** www.mrpi.nl

MRPI® registration 1.1.00162.2021 date of first issue 12-02-2021 date of this issue 12-02-2021 expiry date 12-02-2026

BMI Plonsk Bydgoska 17 09-100 Plonsk

wouterjan.vanden.berg@bmigroup.com www.bmigroup.com/nl

DATE OF ISSUE 12-02-2021

EXPIRY DATE 12-02-2026

1.1.00162.2021

DECLARED UNIT/FUNCTIONAL UNIT m²

DESCRIPTION OF PRODUCT

A m² of concrete roofing tile, as produced (not attached to the roof, gradle to gate)

VISUAL PRODUCT

MORE INFORMATION

https://www.monier.pl/produkty/katalog-produktow/d/da chowki-betonowe-romanska-aerlox.html

SCOPE OF DECLARATION

MRPI® REGISTRATION

This MRPI®-EPD certificate is verified by Kamiel Jansen, Primum.

The LCA study has been done by **Wouter Jan van den Berg, BMI Group.** The certificate is based on an LCA-dossier according to ISO14025 and NEN-EN15804+A1. It is verified according to the 'EPD-MRPI® verification protocol May 2017.v3.1'. EPDs of construction products may not be comparable if they do not comply with NEN-EN15804+A1. Declaration of SVHC that are listed on the 'Candidate List of Substances of Very High Concern for authorisation' when content exceeds the limits for registration with ECHA.

PROGRAM OPERATOR

Stichting MRPI® Kingsfordweg 151 1043GR Amsterdam

ir. J-P den Hollander, Managing director MRPI®

[a] PCR = Product Category Rules

DETAILED PRODUCT DESCRIPTION

Concrete roof tiles are made from the natural raw materials: sand, cement and water. We color that mixture with natural iron oxide, so that the color is retained for a long time. Tiles are extruded using aluminium pallets. After curing, we finish the concrete roof tiles with an innovative top layer developed by our own research department. In recent decades, concrete roof tiles have developed enormously in terms of quality and offer aesthetic reliability for many years. For concrete roof tiles with a Glazuron finish, we apply a thin extra layer, which consists of fine sand, provided with coloring based on iron oxides.

In order to attach the tiles to the roof nails, hooks, battens and counterbattens are used (but n.a., cradle to gate LCA).

The reference service life of the product parts / raw materials does not deviate from the product reference service life which is 60 years.

The concrete tiles are made out of cement, sand, pigments and coatings.

COMPONENT (> 1%)	[kg / %]
cement	confidential
sand	confidential
pigments	confidential
coatings	confidential

(*) > 1% of total mass

SCOPE AND TYPE

The concrete tiles are produced at the location of BMI Plonsk and they are sold at the European market.

The background database is Eco Invent version 3.5. It is a specific EPD for a specific product and the type of this EPD is Cradle-to-Gate.

F	PROD	UCT ST	AGE	СС	ONSTR	RUCTION			U	SE SI	AGE			END OF LIFE			BENEFITS AND	
					PRO	CESS									STA	GE		LOADS BEYOND THE
					ST	AGE												SYSTEM BOUNDARIES
Raw material cumuly		Transport	Manufacturing	Transport gate to site		Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Recovery- Recovery- Recycling- potential
	A1	A2	A 3	1	A4	A5	B1	B2	B 3	B4	B5	B6	B7	C1	C2	C3	C4	D
	х	Х	Х	N	1NA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA	MNA
>	K = Mc	dule as	sessed															

MNA = Module not assessed

LCA Processflow tile production

Figure: LCA process diagram according to EN 15804(7.2.1)

REPRESENTATIVENESS

The input data are representative for Romanska Aerlox, a product of BMI. The data are representative for the Netherlands.

	UNIT	A1	A2	A3	A1-A3
ADPE	kg Sb-eq.	1.18E-5	1.51E-6	6.38E-6	1.97E-5
ADPF	MJ	3.27E+1	9.33E+0	2.90E+1	7.10E+1
GWP	kg CO2-eq.	6.64E+0	5.94E-1	1.90E+0	9.13E+0
ODP	kg CFC11-eq.	1.25E-7	1.12E-7	1.38E-7	3.75E-7
POCP	kg ethene-eq.	1.74E-3	3.59E-4	5.76E-4	2.68E-3
AP	kg SO2-eq.	1.81E-2	2.50E-3	5.54E-3	2.61E-2
EP	kg (PO4)3eq.	3.04E-3	5.00E-4	1.18E-3	4.73E-3

ADPE = Abiotic Depletion Potential for non-fossil resources

ADPF = Abiotic Depletion Potential for fossil resources

GWP = Global Warming Potential

ODP = Depletion potential of the stratospheric ozone layer

POCP = Formation potential of tropospheric ozone photochemical oxidants

AP = Acidification Potential of land and water

EP = Eutrophication Potential

RESOURCE USE per functional unit or declared unit

	UNIT	A1	A2	A3	A1-A3
PERE	MJ	2.15E+0	0.00	1.07E-1	2.26E+0
PERM	MJ	0.00	0.00	0.00	0.00
PERT	MJ	2.08E+0	9.86E-2	1.68E+0	3.86E+0
PENRE	MJ	1.73E+1	0.00	8.66E-1	1.82E+1
PENRM	MJ	0.00	0.00	0.00	0.00
PENRT	MJ	3.41E+1	9.96E+0	2.99E+1	7.39E+1
SM	kg	0.00	0.00	0.00	0.00
RSF	MJ	7.87E+0	0.00	3.93E-1	8.26E+0
NRSF	MJ	8.52E+0	0.00	4.26E-1	8.95E+0
FW	m3	5.80E-2	1.63E-3	6.50E-3	6.61E-2

PERE = Use of renewable energy excluding renewable primary energy resources

PERM = Use of renewable energy resources used as raw materials

PERT = Total use of renewable primary energy resources

PENRE = Use of non-renewable primary energy resources excluding non-renewable energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total use of non-renewable primary energy resources

SM = Use of secondary materials

RSF = Use of renewable secondary fuels

NRSF = Use of non renewable secondary fuels

FW = Use of net fresh water

	UNIT	A1	A2	A3	A1-A3
HWD	kg	9.68E-5	5.79E-6	5.72E-5	1.60E-4
NHWD	kg	2.39E-1	6.44E-1	1.66E-1	1.05E+0
RWD	kg	5.37E-5	6.33E-5	5.76E-5	1.75E-4
CRU	kg	0.00	0.00	0.00	0.00
MFR	kg	0.00	0.00	1.87E+0	1.87E+0
MER	kg	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.00	0.00
ETE	MJ	0.00	0.00	0.00	0.00

HWD = Hazardous Waste Disposed

NHWD = Non Hazardous Waste Disposed

RWD = Radioactive Waste Disposed

CRU = Components for reuse

MFR = Materials for recycling

MER = Materials for energy recovery

EEE = Exported Electrical Energy

ETE = Exported Thermal Energy

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

In the Life cycle assessment the following is included in this study:

Product stage (A1-A3)

The production stage consists of the extraction of raw materials, transportation of the raw materials, processing the raw materials into materials and the production of the product. The required energy for production, external treatments, ancillary materials, packaging material and production emissions are included.

Transport Movement	Transport conveyance	Weight x distance [TKM}
Transport from suppliers and indirect suppliers to BMI	Multiple Transport Conveyances	5.24
Transport to external treament	Multiple Transport Conveyances	0

DECLARATION OF SVHC

None of the substances contained in the product are listed in the "Candidate List of Substances of Very High Concern for authorisation", or they do not exceed the threshold with the European Chemicals Agency.

REFERENCES

ISO 14040

- ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework; EN ISO 14040:2006

ISO 14044

- ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines; EN ISO 14040:2006

ISO 14025

- ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

- EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

SBK-verification protocol

- SBK-verification protocol – inclusion data in the Dutch environmental database, Final Version 3.0, January 2019, SBK

SBK-Assessment Method

- Assessment Method Environmental Performance Construction and Civil Engineering Works (GWW), Version "3.0 January 2019" incl. amendments July 2019, Jan 2020, SBK

REMARKS

None

